Off-Line Permutation Routing on Circuit-Switched
Fixed-Routing Networks

Abdou Youssef

Department of EECS, The George Washington University, Washington, D.C. 20052

Circuit-switched fixed routing (CSFR) is an increasingly popular communication model wherein
there is between every source—destination pair a single path that is system-determined by a fixed-
routing rule. This paper studies the new problem of off-line permutation scheduling on linear
arrays, rings, hypercubes, and 2-dimensional arrays, assuming the CSFR model. Optimal permutation
scheduling involves finding a minimum number of subsets of nonconflicting source—destination
paths. Every subset of paths can be established to run in one pass. In this paper, optimal permutation
scheduling on linear arrays is shown to be linear, and on rings, NP-complete. On hypercubes, the
probiem is NP-complete. However, we will give an O(N log N) algorithm that routes any permutation
in two passes if the modei is relaxed to ailow for two routing rutes, namely, the so-called e-cube
rute and the e~ '-cube rule. This complexity is reduced to O(N) hypercube-parallel time. Finally, an
O(N log? N) bipartite-matching-based algorithm will be designed to schedule any permutation on

p X q meshes/tori in q passes. © 1993 by John Wiley & Sons, Inc.

1. INTRODUCTION

The circuit-switched fixed-routing model has been
adopted by several major computer companies that
produce parallel computer systems. These systems in-
clude iPSC-2 and iPSC-860 by Intel, NCUBE/I0 by
nCUBE, and Symult 2010 by Ametek. In this routing
model, the routing algorithm must follow for every
source—destination pair a fixed, single path that is de-
termined at manufacturing time according to some
routing rule. We refer to this routing model as the fixed-
routing model for short and to the rule whereby the
single path is determined as the fixed-routing rule. The
focus of this paper is the important problem of permuta-
tion routing on networks under the fixed-routing model.

When routing a permutation f [where every node
needs to send a single message to node f(i)], path con-
flicts often occur and cause communication overhead.
There are three sources of communication overhead.
namely, link conflict, node conflict, and path length.

NETWORKS, Voi. 23 (1993) 441-448
© 19893 by John Wiley & Sons, Inc.

It was shown by Bokhari [2] that the impact of node
conflict and path length is negligible in circuit-switched
fixed-routing systems, while the impact of link con-
tention is the most dominant. Therefore, this paper will
assume throughout that the communication overhead
is due to link contention only.

To minimize the communication overhead when
routing a permutation, the permutation has to be sched-
uled. Scheduling a permutation consists of partitioning
the set of nodes into m subsets E,E,,E,. for
some m, such that for every i = 1,2,m, the paths
originating from the nodes in E, do not conflict over
links, i.e., they can be established simultaneously and
their corresponding messages can be delivered in paral-
lel. E, represents then the set of source nodes that can
send data to their destinations at timei, i = 1,2.. . . .m.
Optimal scheduling is the process of finding a partition
of minimum size m, and the partition is called an opti-
mal schedule.

It should be pointed out that most of the research

CCC 0028-3045/93/040441-08
441

442 YOUSSEF

efforts on permutation scheduling in graph networks
have assumed packet switching [6, 15. 18, 19]. Permu-
tation scheduling on circuit-switched fixed-routing net-
works is fairly new. This author addressed online self-
routing of bit-permute-complement permutations on
fixed-routing meshes [20], but for arbitrary permuta-
tions and for other networks, no effort has been made.

This paper will study off-line permutation scheduling
on graph networks under the fixed-routing model, and
give efficient scheduling algorithms for linear arrays,
hypercubes, meshes, and tori. In the case of linear
arrays, the algorithms are based on node coloring of
certain intersection graphs. In hypercubes, the routing
algorithm is based on routing in the well-known univer-
sal Benes multistage interconnection network [1]. Fi-
nally, scheduling on meshes and tori will be accom-
plished by using bipartite perfect matching in certain
model graphs.

The paper is organized as follows: The next section
will cover some fundamentals and overview relevant
concepts. Section 3 will develop a node coloring formu-
lation of permutation scheduling under the fixed-
routing model. The following four sections will address
the complexity of optimal permutation scheduling on
the various networks and give optimal or suboptimal
algorithms for each network.

2. PRELIMINARIES

This section will specify the fixed-routing rules on the
networks under consideration. It will also overview
intersection graphs and their node coloring complexity.

2.1. The Fixed-routing Rules

In linear arrays, there is only one path between any
pair of nodes. Therefore, there can only be one fixed-
routing rule. In the case of rings, we will consider the
clockwise rule that selects the clockwise path. This
forces the ring to be a directed graph. The counter-
clockwise rule can be treated similarly. In meshes/tori,
the row-column rule will be considered. In this rule,
the source-destination path goes rowwise to the correct
column and then columnwise to the destination.

In the k-cube, call the bits that differ in two nodes
x and y cfbinary labels x;_, . . . x;xpand y,_, . . . y,¥,
the changeable bits. It is evident that a shortest path
from x to y can be generated from x one node at a time
by complementing every changeable bit exactly once
in some order. We will define two fixed-routing rules:
The e-cube rule selects the path corresponding to com-
plementing the changeable bits from right to left. The
e~ '-cube rule selects the path corresponding to comple-

4 1

Aninterval graph 4

(@)
N “RX‘ :
Of ===
Acirculax(ba;'c graph

Fig. 1. Intersection graphs.

menting the changeable bits from left to right. The e-
cube rule is implemented by Intel’s iPSC2.

2.2. Intersection Graphs

Let A|,A,, ... A, be n sets. The intersection graph
modeled by these sets is the graph G = (V.E) where
V={12,... .,ntand E = {(i,j) | A, " A, # D}. If the
sets are intervals on the real axis, the intersection graph
is an interval graph [7, 8]. If the sets are arcs of a
circle, the graph is a circular arc graph [4]. See Figure
t for examples of intersection graphs.
Graph-theoretical problems related to these sub-
classes of graphs have received intense attention (see
Golumbic [5] and the references therein for a thorough
treatment of these graphs). The problem relevant to this
paper is node coloring because optimal permutation
scheduling on linear arrays and rings turn out to be
equivalent to node coloring of interval graphs and cir-
cular arc graphs, respectively, as will be shown later.
(A node coloring of a graph is the assignment of colors
to nodes such that adjacent nodes have distinct colors.)

3. NODE COLORING FORMULATION

Let G = (V,E) be a network with a fixed-routing rule
s, and f a permutation of V to be scheduled on G. Our
node-coloring formulation aims at constructing a graph
[(G) such that every schedule of fin G corresponds
to a node coloring of I'+(G) and vice versa. In particu-
lar, the chromatic number of I',(G) is equal to the
minimum number of passes needed toroute finG. 1.e..
the size of the optimal schedule of f.

Let FAG) be the intersection graph modeled by the

Sets A, = {e | e is an edge in the path i = f(D}, for aj]
i€V, ie., I (G = (V',E"), where V' = V and i)y e
E" if and only if the s-determined paths i — f(j) and
J = f() overlap (i.e., conflict) over at least one link
in G.

Theorem 1. (q) 4 partition E| E,, . . E, of Visa
schedule of fin G if and only if the m-coloring of T(G)
derived by coloring the nodes in E, with color Jforj =
12, ..., M is a correct node coloring.

(b) The chromatic number of TA(G) is equal to the
size of the optimal schedule of f,

Proof. (a) Assume that E\E,,E, is a schedule
of fin G. Then, by definition, for every;=12,... m,
the paths (; — f(i)),'ef;‘j are mutually nonoverlapping
(i.e., nonconflicting), and, therefore, the corresponding
nodes / € E; are mutually nonadjacent in TAG). Thus,
all the nodes ; € E; can be colored with the same color,
say color . Conversely, if for every j the nodes in £
can be colored with the same color in T{G), then their
corresponding paths are nonconflicting in G, and,
therefore, (E})1<<m Is a schedule of fin G.

(b) This immediately follows from part (a). n

Therefore, the complexity of scheduling a permuta-
tion fin a ﬁxed-routing network G is the same as node
coloring of the intersection graph I'{G).

4. PERMUTATION SCHEDULING ON
LINEAR ARRAYS

We have to distinguish two cases: The first is when
the edges are hal -duplex, i.e., data can flow over a
link in either direction but not simultaneously. The

case as a corollary.

Observe that if G is the linear array Ly the graph
[;(Ly) is an interval graph. This is so because two
paths i — £(;) and j — £(;) conflict over links in L,
if and only if the real intervals [, £(D} and U, ()]
are overlapping. Note that an interval [a,b] is the set
{x | xis areal number and q < x < b}. Note also
that if i > f(i), the interval [i, £(D] is simply taken to
denote [£(i),i].

Node coloring of intervaj graphs has been studied
extensively as it has applications in VLS] channel rout-
ing. An optimal (N log N) time algorithm to color
interval graphs with a minimum number of colors has
been found by Gupta et al. (7]. We will give a brief
presentation of this algorithm and then conclude from
it a refined O(N) version for the case of permutation
routing.

OFF-LINE PERMUTATION ROUTING 443

The algorithm jp [7] is the following:

Procedure lNTERVAL-COLOR

begin

1. Sort the end points of the intervals.

2. Let Q be a list of available colors, and m. an integer
variable representing the maximum number of col-
ors needed so far. Initialize QtoTand mto g

3. Scan the sorted endpoints from left to right. When
an endpoint x is reached do

if (x is a left end of an interval 1) then
if (Q is not empty) then
delete a color ¢ from Q and color 7 with c;
else
increment m and color I with color m;
else/* x is the right end of 7%/
insert the color of J into the list Qo;
end

Observe that in the case I'/(Ly) the 2N endpoints
of the intervals are the integers 0,1, . . . N =1, where
every [occurs twice: in [i,£())] and [f7'G).i]. There-

scheduling on linear arrays:

procedure LIN-SCHEDULE([: in; c[0. N3 -] out)
/*f a permutation to schedule, cli] = color of j #/

begin
integer m := (.
queue O = (J; /%y and Q are as before*/
integer /; /*node index*/
fori=0toN - 1 do
case
i = f(i):
cli] :=1;
E<fONi<f1):
cli] ‘=COLOR(Q,m);
Lf~®] :=COLOR(Q,m):
S < i< f)
clf7\@) = cfiy;
/*This was a combined step*/
/*equivalent to adding the*/
/*color of Lf(),] to o/
/*and giving a color from*/
*Q to [i, f i)/
fUD < i <)
/*A similar combined step*/
cli] i= c[f~'i);

444 YOUSSEF

> fNi>fY):
enqueue(c(i]);
enqueuelc[f~'(D];
endcase
endfor
end procedure

The function COLOR follows:

function COLOR(Q,m)

begin
integer col;
if Q # & then col =deque(Q); return(col):
else m := m + 1, return(m);

end

Example. Consider the linear array of 7 nodes, and
let f=[2301645]bea permutation to be routed
[f(0) = 2, f(1) = 3 and so on]. We will assign a color
to each of the seven nodes using LIN-SCHEDULE.
After each color assignment, the value of m and the
contents of Q will be shown. (Note that f~! = [230
1564).)

0<f0)=2A0<fY0)=2
c0li=1l,m=1,0=90
cffOl=c2l:'=2,m=2,0=0
l<f=3A1<f Y ()=3
cll:'=3, m=3,0=0
cff ' =cBli=4,m=4,0=07

2>fQ=0ANA2>f"2)=0
Q = {2} (due to enqueue(c[2])

Q = {2,1} (due to enqueue(c[f~'(2)]))
m=4

3I>fB)=1A3>f13)=1
0 = {2,1,4} (due to enqueue(c[3]))
Q = {2,1,4,3} (due to enqueue(c[f~'(3)))
m =4

4<f@) =6 Na<f'@d)=5
c4] := 2 (deque(Q)), Q = {1, 4, 3}
clf~'(@)] = cl5] := 1 (deque(Q)), Q = {4, 3}

m = 4

4=f<5<f N5 =6
clf7'3] = cl6] := c[5] = 1
m=4,0Q = {4, 3}

6>f6)=5"N6>f6) =4

Q = {4, 3, 1} (due to enqueue(c[6]))
Q = {4, 3, 1, 2} (due to enqueue(c{f~(6)]))
m=4

il

k]

)
Step 4 B S
2 Step 3 ——
= Step2 +-——— E——
Sepl ————— -— -
*r—o—=e *r—o——o——9
0 1 2 3 4 5 6

Fig. 2. Routing of f on the linear array L _.

Therefore, routing f takes 4 time steps (see Fig. 2):
STEP 1. 0> 2,5—>4,6—> 5

STEP2. 2> 0,4—> 6

Ster3. 1 — 3

STep 4. 3 — 1,

The time complexity of LIN-SCHEDULE is clearly
O(N), which is optimal because the size of the input
fis O(N). The optimality of the resulting schedule is
a direct result of the optimality of the number of colors
of the algorithm by Gupta et al. {7]. Note that in the
case where the links are full duplex the scheduling can
be done in two phases: In the first phase, the nodes /
whose destinations are to their right [i.e., i < f(i)] are
colored with colors 1,2, In the second phase. the
nodes { whose destinations are to their left [i.e.. f(i) <
i} are colored with colors 1,2, In both phases.
the same procedure LIN-SCHEDULE can be used.
The optimality of the resulting schedule is a conse-
quence of the optimality of the half-duplex case.

5. PERMUTATION SCHEDULING ON RINGS

It will be shown that permutation scheduling on rings
in NP-complete by reducing the problem of node color-
ing of circular arc graphs to the problem of scheduling
of partial permutations on the clockwise ring.
Consider an instance [of node coloring in a circular
arc graph. Let (x;,x;), (x5,x3), ... ,(xy,_;.x5,) be n
clockwise arcs. Assume without loss of generality that
no endpoint is shared by more than one arc. View the
endpoints as nodes on the circle periphery. Scan the
endpoints clockwise, starting with x,, and relabel them
by 0,1,2n —1 in the order they are scanned (see
Fig. 3 for an example). View these nodes as a ring R,
of N nodes where N = 2n and the edges are {(i.i ~ |
mod Nyli=0,1,...,N — 1}, and let fbe the follow-
ing partial permutation: For every arc (x,;,x,,.). if j 15

The ring and the
parmal Py

Fig. 3. Arcs-to-ring transformation.

the new label of x.;, then f(j) is the new label of x,,.,.
In other terms, the startpoint of each arc needs to
send a message to the endpoint of that arc.

It can be easily seen that I'/(Ry) is the same arc
graph /. In particular, every schedule of f corresponds
to an arc coloring of the circular arc graph and vice
versa. Thus, node coloring reduces to scheduling of
partial permutations on rings. In turn, scheduling of
partial permutation on rings can be shown to reduce
to scheduling of full permutations on rings. Since node
coloring of circular arc graphs is NP-complete {4], it
follows that permutation scheduling on fixed routing
rings is NP-complete.

6. PERMUTATION SCHEDULING
ON HYPERCUBES

In this section, the permutations that are routable in
one pass (i.e., m = 1) under one of the rules, e '-cube
and e-cube, will be characterized assuming that the
links are full duplex. Using this characterization, it will
be shown that the very useful (-realizable (resp., Q ~'-
realizable) permutations [10] are routable in one pass
on the hypercube under the e~'-cube (resp., e-cube)
rule. Afterward, the Benes routing algorithm will be
used to schedule arbitrary permutations in 2 passes on
the hypercube.

Throughout this section, the hypercube under con-
sideration is a k-cube of N = 2* nodes and the permuta-
tions. are permutations of {0,1, N ~ 1}. We will

OFF-LINE PERMUTATION ROUTING 445

also follow the notation that every node x has the binary
label x,_, . . .x,x,.

The following lemmas will lead to the desired charac-
terization.

Lemmal. Lets =5, ,...s550andd =4d,_, ... dd,
be two nodes in the k-cube under the ¢ '-cube rule.
The path s — d goes through an edge (x,v) in the r-
th dimension if and only if x = d,_, . . . d,_s5, .. .5,
y=d_,...ds,_,...s0andd, =7,

Proof. Assume that the path s — d goes through an
edge (x,y) in the r-th dimension. Under the e '-cube
rule, the path from s to d is found by complementing
the changeable bits of s from left to right, where the
changeable bits are the ones that differ in s and d.
Therefore, when the path reaches x to cross the r-th
dimension, all the bit positions k — 1, 4k -2, .. r +
I have been processed and the changeable bits among
them complemented. Thus, the bitsk — 1, k-2,
r + 1 agree in 4 and x. The remaining bits in x are
still the same bits in s. This shows that x = d,_, . . .
d,.s, . . . 5. Since y is reached in the immediate next
step by crossing the r-th dimension, it follows by the
same line of argument thaty = d,_, . . . d.s,_, . . . 5,
The necessity of going through the r-th dimension can
only be when d, = 5,.

The converse is easily established by following the
above argument backward. n

Lemma 2. Two paths s — d and s’ — d' conflict over
a link in the k-cube under the e™'-cube rule if and oni
if there exists an integerr, 0 = r < k — 1, such that
dioy oo ds,oy oS =dioy L. dis)
=d =5 =5,

Sodnd d.

Proof. Assume that the paths s — d and v — ./
conflict over a link. Let (x,y) be that link and assume
it is in the r-th dimension for some r, 0 = r < & - 1|
Using the previous lemma, it is concluded that

dk_,...d,+,s,.. SpXx =dp_y...d s .
di_y...ds,._ .so,y—dk, d’s’ : v
=5, and d, = ; The last four equalmes vield thae
di_y...ds,_, =di_ . ..ds/_, .. oand
=d =5 = F’

The converse can be established similarly u~sing b
previous lemma. e

In the well-known paper by Lawrie [10]. contheting
paths in @ and ! networks were charactensed he
following lemma is a brief restatement of the charu. s
ization of conflicting paths in () networks. The rcuder
is referred to [10] for the proof.

Lemma 3. Two paths s—> dand s' — d' conflur ..«
a link in Q of 2* inputs if and only if there ¢vicre .n

446 YOUSSEF

integerr, 0 =r =k — 1, such that d,_, .
So=di_y...dis.. ...

cods ...

We thus have this interesting theorem:

Theorem 2. (a) Every permutation realizable by the)
network without conflict is routable in one pass on the
k-cube under the e '-cube rule.

(b) Every permutation realizable by the ()~} network
without conflict is routable in one pass on the k-cube
under the e-cube rule.

Proof. Part (a) follows from the preceding lemmas
and discussion. Part (b) follows from part (a) and the
fact that the e-cube rule is the inverse of the e~ !-cube
rule and Q7! is the inverse of Q. |

Since many interesting and frequently used permuta-
tions are realized by Q and !, it follows that many
interesting permutations are routable in one pass on
the fixed-routing hypercubes such as iPSC-2 which
uses the e-cube rule.

As for arbitrary permutations, it was shown in [14]
that optimal permutation scheduling on hypercubes is
NP-complete. However, because of the importance of
hypercubes and permutation routing, the problem can-
not be left there. We will follow another approach
based on Benes routing and the fact that every Benes
network is identical to the network derived from con-
catenating an 1~' network with an () network, i.e.,
Benes = Q7'Q). We will next outline this approach that
yields a 2-pass scheduler:

I. Use Lee's algorithm [11] which, for any given per-
mutation f, finds the switch settings of Q~'(2 to real-
ize f.

2. Let g be the permutation realized by the switch
settings of the ™! part, and let 4 be the permutation
realized by the switch settings of the Q part. Clearly,
f=ge°h.

3. Route g in one pass on the hypercube under the
e-cube rule, and then route 4 in one pass on the
hypercube under the e !-cube rule. This is doable
after Theorem 2.

Lee’s algorithm takes O(N log N) sequential time
[11], but O(N) parallel time. The parallel algorithm in
{11] can be shown to run on the k-cube with the same
complexity O(N). Thus, our hypercube scheduler
takes O(N log N) sequential time and O(N) parallel
time on the k-cube. The parallel complexity can be
further reduced to O(log N) parallel time on the hyper-
cube for the interesting classes of permutations biz-
permute complement (BPC) and linear-complement
(LC) using the Benes routing algorithms in [16] and

[3], respectively. The details of these Benes routing
algorithms can be found in their respective references.

We thus have a fast cube scheduling algorithm that
allows every permutation to run in two passes if the
routing model allows for the two routing rules, namely,
the e-cube rule and the ¢~ '-cube rule.

7. PERMUTATION SCHEDULING ON
MESHES/TORI

Using bipartite matching, we will show that every per-
mutation can be routed on p x g meshes/tori (p < q)
in g passes under the row-column routing rule. The
following standard theorem about perfect matchings in
bipartite graphs will be of prime use. The proof of this
theorem can be found in [13].

Theorem 3. Let G = (U,V,E) be a bipartite graph such
that for every subset A of U, we have T(A)| = |A],
where I'(A) is the subset of nodes in V that are adjacent
to nodes in A. Then, G has a perfect matching, that
is, a matching of size = min(|U\,|V|).

’

Assume that the node in row x, and column x, is
labeled x,x,, forall x;, = 0,1,... p — l and x, = 0,
l,. .. .g — 1. The main idea of scheduling is to select,
in every pass, p paths x,x, = f(x,x;) such that their
sources belong to distinct rows and their destinations
belong to distinct columns. Such paths do not conflict.
This will be accomplished using perfect matching in a
bipartite graph G = (V,V,,E) to be defined next. V, is
the set of rows and V, is the set of columns. For every
pair of nodes (x;,y,) in V, X V,, (x,,y,) is an edge in
E of label y,x, if f(x,x5) = y,y,. Thus, G is a bipartite
multigraph. The following lemma will help us show
that G has a perfect matching of size p.

Lemma 4. Let G = (V|,V,,E) be as just defined. For
every subset A of V|, we have [T(A)| = |A|.

Proof. Let A be an arbitrary subset of V,. For every
node x, € V|, the number of edges incident to x, is
q because row x,; has g source nodes. Thus, the num-
ber of edges incident to nodes in A is g|A|. Similarly,
for every node y, in V,, the number of edges incident
to y, is p because column y, has p destination
nodes. Thus, the number of edges incident to nodes
in ['(A) is p|{[(A)|. Since all the edges incident to
nodes in A are incident to nodes in I'(A), it follows
that p|['(A)| = g|A|. This yields that [[(A)| = q/p|A| =
|A| because g/p = 1. =

Using the previous lemma and Theorem 3, it is con-
cluded that G = (V,,V,,E) has a perfect matching M

of size equal to min(|V\|,|V,)) = min(p,q) = p. Every
edge (x,,y,) of some label y, x, in M corresponds to the
path x,x; — f(x,x,) that is x,x, — y,y, consisting of
row-path x,x,— x,y, inrow x,, followed by the column-
path x;v, — vy, in the column y,. The p paths corre-
sponding to the p edges of the matching M are mutually
nonconflicting because every two such paths have their
sources in two distinct rows and their destinations in
two distinct columns due to the fact that M is a match-
ing. Thus, all these paths can be established simultane-
ously in one pass.

By deleting M from G, we obtain a new bipartite
graph that can be similarly shown to have a perfect
matching. By repeating this process g times, we obtain
q perfect matchings yielding a g-pass schedule for f
under the row-column routing rule. We thus have a g-
pass scheduling algorithm for meshes/tori.

Time complexity: The construction of G = (V,,V,,E)
takes O(N) time. The bipartite matching algorithm
takes O(min(|V [,|V.)|E| = O(ppq) [17]. deleting M
from G takes Ofp) time. Thus, the g iterations take
O(p’q>) = O(N?) time, where N is the number of pro-
cessors. Hence, the whole algorithm takes O(N?) time.
This complexity can be brought down to O(N log?
N) time by reducing perfect matching to permutation
routing on Clos networks and using the Clos routing
algorithm in [12].

8. CONCLUSIONS

This paper addressed off-line permutation scheduling
on networks under the circuit-switched fixed routing
model. Using node coloring of intersection graphs, it
was shown that permutation scheduling on linear
arrays takes linear time, and on rings it is NP-
complete. The paper also developed a Benes-based
algorithm that routes any permutation on the hyper-
cube in two time steps when two routing rules are
allowed. The complexity of the algorithm is the same
as the Benes routing complexity, which is O(N log
N) sequential time and O(N) hypercube-parallel time.
This time cost is very affordable for off-line scheduling.
In addition, it was established that every () ~'-realizable
permutation can be routed on the hypercube in one
time step under the standard e-cube routing rule and
that the routing need no scheduling. Finally, an
O(N log* N) time algorithm to schedule arbitrary per-
mutations on p X g meshes in g time steps was de-
signed.

One conclusion that can be drawn from the paper is
that the hypercube is the most efficient circuit-switched
fixed-routing network among the representative stan-
dard networks considered in this paper. To allow for

OFF-LINE PERMUTATION ROUTING 447

the highest efficiency and use of hypercubes, it is rec-
ommended that two fixed routing rules be imple-
mented, namely, the e-cube rule and the e~ '-cube rule.

Several related topics deserve further investigation.
First, the still-open inherent complexity of optimal per-
mutation scheduling on meshes and tori need to be
addressed. Second, other modes of routing on various
networks under the fixed-routing model should be ex-
amined. Third, since the algorithms presented here are
too costly for on-line permuting, faster permuting algo-
rithms are needed even if they yield suboptimal sched-
ules. One possible approach is ad hoc permuting that
requires no scheduling. Rather, every node tries to
establish the path to its destination and keeps trying
until it succeeds. Our preliminary probabilistic analysis
of ad hoc permuting indicates that the routing delay is
surprisingly close to the optimal delay. Further exami-
nation of this approach and its performance is currently
being undertaken.

REFERENCES

(1] V.E.Benes, Mathematical Theory on Connecting Net-
works and Telephone Traffic. Academic Press, New
York (1969).

[2] S. H. Bokhari, Communication overheads on the Intel
iPSC-2 hypercube. ICASE Interim Report 10 (May
1990).

[3] R. Boppana and C. S. Raghavendra, On self routing
in Benes and shuffle exchange networks. Proc. Int'i
Conf. Par. Proc. (Aug. 1988) 196-200.

(4] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H.
Papadimitriou, The complexity of coloring circular arcs
and chords. SIAM J. Alge. Discrete Methods 1
(1980) 216-227.

{51 M. C. Golumbic, Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, New York (1980).

[6] A. Gottlieb and C. P. Kruskal, Complexity results for
permuting data and other computations on Parallel
Processors. J. ACM 31(2) (1984) 193-209.

{71 A.l. Gupta,D.T.Lee,and]. Y.-T. Leung, An optimal
solution for the channel-assignment problem. /EEE
Trans. Comput. C-28(11) (1979) 807-810.

(8] A.I Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient
algorithms for interval graphs and circular-arc graphs.
Networks 12 (1982) 459-467.

[91 F. Harari, On the group of the composition of two
graphs. Duke Math. J. 26 (1959) 29-34.

[10} D.K. Lawrie, Access and alignment of data in an array

processor. IEEE Trans. Comput. C-24 (1975)
1145-155.
{11] K. Y. Lee, A new Benes network control algorithm.

{EEE Trans. Comput C-36 (1987) 768-772.

448

(15]

(16]

YOUSSEF

G. F. Lev, N. Pippenger, and L. G. Valiant, A fast
parallel algorithm in permutation network. [EEE Trans.
Comput. C-30 (1981) 93-100.

C. L. Liu, Introduction to Combinatorial Mathemat-
ics. Computer Science Series, McGraw-Hill, New
York {1968).

L. Liu. H.-A. Choi. and S. Rotenstreich. Simultaneous
task migration on circuit-switched hypercube multi-
processors. Technical Report GWU-IIST-91-21,
George Washington University (Sept. 1991).

D. Nassimi and S. Sahni, An optimal routing algorithm
for mesh-connected parallel computers. J. ACM 27(1)
(1980) 6-29.

D. Nassimi and S. Sahni, A self-routing Benes network

[17)

(18]

and parallel permutation algorithms. [EEE Trans. Com-
put. C-30 (1981) 332-340.

C. H. Papadimitriou and K. Steiglitz, Combinatorial
Optimization, Algorithms and Complexity. Prentice-
Hall, Englewood. NJ (1982).

C.S. Raghavendraand V. K. Prasanna Kumar, Permu-
tations on [lliac [V-type networks. /[EEE Trans. Com-
put. C-35(7) (1986) 662-669.

L. G. Valiant, A scheme for fast parallel communica-
tion. SIAM J. Compur. 11(2) (1982) 350-361 .

A. Youssef, Online communication on circuit-switched
fixed routing meshes. Proceedings of the Inr'l Parallel
Processing Symposium, California (March 1992).

