
Wildcards in Math Search, Implementation Issues

Moody E. Altamimi
Department of Computer Science

The George Washington University
Washington, DC, 20052, USA

maltamimi@gmail.com

Dr. Abdou S. Youssef
Department of Computer Science

The George Washington University
Washington, DC, 20052, USA

ayoussef@gwu.edu

Abstract

 Math search is a new area of research with many ena-
bling technologies but also many challenges. Some of the
enabling technologies include XML, XPath, XQuery, and
MathML. Some of the challenges involve enabling
search systems to recognize mathematical symbols and
structures. Several math search projects have made con-
siderable progress in meeting those challenges. One of
the remaining challenges is the creation and implementa-
tion of a math query language that enables the general us-
ers to express their information needs intuitively yet pre-
cisely. A new query language that extends the current
standard query syntax has been developed. An important
feature of the math query language is the introduction of a
powerful set of wildcards that are deemed important for
math search. These wildcards provide for more precise
structural search and multi-levels of abstraction. This pa-
per will present three sets of wildcards and discuss their
implementation details.

1 INTRODUCTION

The need to facilitate scientific information exchange
between researchers has resulted in the creation of a
growing number of specialized mathematical library pro-
jects around the world. These projects aim to make scien-
tific literature available on the Web. With the increasing
online availability of electronic documents that contain
mathematical expressions, the ability to find relevant in-
formation has become increasingly important. Yet, sup-
port for searching for mathematical expressions is only in
its infancy.

The development of math search capabilities is a new

area of research with many technical challenges. Some of
the challenges involve enabling search systems to recog-
nize mathematical symbols and structures. Several math
search projects have made considerable progress in meet-
ing those challenges. Several research projects on math
search have addressed many of the issues and challenges
in math search. Notable among those math-search projects
are the math search of the DLMF project at NIST [1], and
the math search system of Design Science [2].

The query languages assumed or implemented in those

systems follow primarily the same syntax as standard text
search. That syntax consists mainly of Boolean query op-

erators (i.e., "and", "or", and "not") and phrase operators.
Phrase queries are important in math search since math
expressions and fragments of expression are meant to be
sequences of consecutive terms, that is, phrases. The
standard syntax however, provides for a limited use of
wildcards, namely, "?" and "*". The first stands for one
arbitrary character inside a keyword, and the second
stands for zero or more arbitrary characters inside a key-
word.

Such wildcard syntax is severely limiting in math

search. For example, there is a need for additional wild-
cards to stand for any number of rows or columns when
searching for a matrix, and for wildcards to specify sub-
parts of a mathematical expression. Also, if a user does
not care what certain terms are (such as variable names)
but cares that two or more of those terms are identical, the
standard query syntax is inadequate to express such a
need.

A new query language that extends the current stan-

dard query syntax has been developed [13]. The language
describes the user’s information needs by allowing the au-
thoring of different types of queries and allowing the use
of an expanded set of wildcards. The expanded set of
wildcards will enable science and math users to specify
their information needs in a more precise way to guaran-
tee that the matches are more relevant to their needs. In
addition to character-level wildcards, two new sets of
wildcards are introduced. The new sets handle search at
the parsed tree level of a mathematical structure. They
will allow the user greater levels of expression.

This paper focuses on the powerful set of wildcards

proposed by the query language in [13] and describes
their implementation algorithms. The implementation of
the language maps queries written in that language into
XPath/XQuery queries [3, 4]. It is assumed that the math
content is in Content MathML [5]. The justification for
this assumption is based on current technological ad-
vances and expected future practices. For example, many
conversion tools already exist for converting LaTeX to
MathML, such as the Rice University tool for conversion
to Content MathML [6], and Bruce Miller’s LaTeXML
and associated software [7], which convert from LaTeX
to a special XML syntax that includes presentation
MathML and some content mark up. Furthermore, as the

math authoring community becomes more comfortable
with MathML and, more importantly, becomes more con-
vinced of the need for and benefits of Content MathML,
more conversion tools and authoring tools that yield Con-
tent MathML will become available and more dominantly
used.

2 BACKGROUND AND RELATED

WORK

This section surveys work related to equation-based
math search systems and the user query languages they
offer. Mainly query languages developed for the DLMF
project, Design Science search system, and Mathematica,
will be described and particular emphasis will be on their
limited wildcard capabilities. The section also describes
briefly our proposed query language in [13] to put the dif-
ferent sets of wildcards in context.

DLMF and Mathdex

Youssef et al. [8] developed the first generation of an
equation-based math search system as part of the Digital
Library of Mathematical Functions [1] (DLMF) project at
NIST. The DLMF project provides an online source of
mathematical content such as formulas and graphs, and
allows for the search and retrieval of that content [8]. The
mathematical content of DLMF, originally in LaTeX, is
converted to html and xhtml using the LaTeXML markup
language and software tool developed at NIST. Youssef,
who is developing the search system for DLMF, opted for
an evolutionary approach, building on the existing text
search technology. As a result, the query language syntax
is almost identical to text search syntax, with the added
power of recognizing mathematical symbols and struc-
tures to a great extent.

Mathdex [2] is a web-based search engine developed

by Design Science [9] as part of an NSF grant to facilitate
equation-based search. Mathdex indexes not only LaTeX
but also Presentation MathML, and it crawls the Web
looking for Math contents and indexing them. Like the
DLMF search, Mathdex follows an evolutionary approach
by utilizing text search technology.

Even though text search technology has reached a high

level of maturity, it cannot fully capture all of the charac-
teristics inherent in mathematical content. As a result, the
query language developed for the DLMF project has lim-
ited expressive power when the user is trying to look for
patterns within mathematical structures. For example, if a
user wants to look for an expression where "x^2+1" is
somewhere in the denominator without caring exactly in
the denominator, a user should be able to write the fol-
lowing query "/(…x^2+1…)" using the ... wildcard; un-
fortunately, this is not possible using the DLMF search
system or Mathdex. As another example, consider the
situation where a user wishes to specify a query that con-

tains cos^2 x+sin^2 x and indicate that the variable x
could be any other symbol, the best that can be done cur-
rently is to write cos^2 $+sin^2 $, where "$" is a wildcard
that stands for any arbitrary string of characters; this,
however, fails to enforce that the two wildcards must
stand for the same variable name.

Mathematica Search

Wolfram research offers a large online repository of
mathematical functions and formulas [10] encoded in dif-
ferent formats: Mathematica’s standard format, MathML
and ASCII. Mathematica offers an experimental search
tool that allows the user to specify the terms (functions,
numbers, constants, operations) in the query, using drop
down menus. The user can also specify options to filter
the search results based on function types (elementary
functions only or integer functions only). The use of drop
down menus allows the user to create more complex que-
ries by using Boolean AND and OR. The user is able,
however, to search for Mathematica patterns using the
Mathematica language, which eliminates ambiguities in-
herent in mathematical notation. The language covers a
wider range of mathematics than our proposed math user
query language. However, it only offers basic support of
structural search and wildcards, and thus suffers the same
limitations of text-based search systems mentioned above.

An Extensive Math Query Language

Mathematical notation can be ambiguous and cumber-
some to type. The math query language presented in [13]
offers an alternative way to describe mathematical ex-
pressions that are more consistent and less ambiguous
than conventional mathematical notation. The syntax is
intuitive and covers notation that is commonly used when
possible. However, the language is by no means com-
plete. The language focuses on mathematical notation
that is commonly used and supported by Content
MathML 2.0 in the areas of arithmetic, algebra, calculus,
etc. In addition, syntax to handle notation that Youssef
and others didn’t cover but will benefit the math search
community is developed for matrices, ordinary and partial
differential equations, integration, and function composi-
tion. More importantly, a more comprehensive set of
wildcard symbols is introduced, which will enable the
creation of more complex queries that specify subparts of
an expression, and which will provide for more support of
abstraction and structured search. The end result is an
ASCII language that makes unambiguous use of symbols
and has a well-defined grammar.

 As mentioned earlier, there are additional features and
syntax that are possible with the XML-query approach but
not easily implementable by text-IR approach. Table 1 il-
lustrates that point with a few examples. For a more de-
tailed description of the characteristics of our proposed
query language, please refer to [13].

Table 1. User math queries in different areas of math

Type Query Example and Explanation

Matrices

Matrix[;;...a,b...]
Look for a,b somewhere in the
third row of a matrix. In the con-
text of matrices, the comma (,) is
used to separate columns while
the semi-colon(;) is used to sepa-
rate rows.

Partial
Differentiation

D_{x^2,y^3}(expr)
Look for the fifth partial deriva-
tive of an expression for 2 times
with respect to x and 3 times with
respect to y

Function
Composition

f\og
Look for f composed with g

3 WILDCARDS

Wildcards in the area of text search such as "*" and "?"
stand for multiple characters and a single character within
a single keyword. As argued earlier, these wildcards are
very inadequate, and new wildcards are needed. For ex-
ample, there is a need for additional wildcards to stand for
any number of rows or columns when searching for a ma-
trix, and for wildcards to specify subparts of a mathemati-
cal expression.

Two new sets of wildcards are introduced to help cap-

ture user needs in the area of math search: term-level
wildcards and sequence-level wildcards. These two sets
are discussed next; for completeness, the commonly used
wildcards are described first.

Character Level (keyword search): This is the com-
monly used set of wildcards: "$" and "?". The wildcard
“$” is the same as the more familiar “*”, but it is used in-
stead of “*” because the latter is used as the symbol for
multiplication. The processing of wildcards at the charac-
ter level is done through pattern matching algorithms.

Term Level (tree search): From the previous set, the $
can be used to stand for a single arbitrary term but this is
not sufficient; wildcards that stand for a sequence of
terms are needed. The following wildcards are introduced
that allow the user to search for a sub-tree in the tree
structure of mathematical expressions.

Table 2. Term-level wildcards

Symbol and its meaning

• The wildcard “$”: when used alone, it stands for any
arbitrary single term, which can be a variable, a num-
ber, a matrix name, a function name, an operator
name, a set name, and so on. For example, f($)
matches a function f with exactly one argument that is

a single term. As a result, f(x) will be retrieved but
not f(x^2).

Another example, $ + 2 is a query that will retrieve
3+2 as well as x+2 but not (3*4)+2 since 3*4 is not a
single term but a group of terms that form a sub-
expression.

• The wildcard “- -”: stands for one or more terms.
This means something must exist, either a single term
or a sub-expression. For example, f(x, --) will match
a function f with exactly two arguments where the
first is x and the second can be a single term or an ex-
pression. As a result, f(x, y) and f(x, y^2) will be re-
trieved but not f(x). Note, on the other hand, that f(x,
$) matches functions f with two arguments where the
second must be a single term.

Another example, matrix(--,x+1) will look for x+1 in
the last column in matrices that have exactly two col-
umns. While matrix(--) matches any matrix with one
row and one column irrespective of the nature of that
entry.

Another example, --+-- matches sin+cos, A+B, and
matrix(a,b; c,d)+ matrix(1,2; 3,4) among others.

Note: -- will also be used to support structural search,
which will be discussed later.

Processing these two wildcards is relatively straight-
forward. When encountering $ the search will be for a
term that is either an identifier or numeric value. When
encountering -- the search is for the "existence" of a sub-
expression (sub tree in the expression tree).

Sequence-level and parse tree-level wildcards: The two
wildcards in this set will match zero-or-more, or one-or-
more members in a sequence, or more generally, for zero-
or-more/one-or-more nodes at the same level in a parse
tree. A new wildcard that searches for exactly one mem-
ber will not be considered since "--" from the previous set
of wildcards can stand for a single member. (Note that a
sequence can be a vector, a sequence of arguments of a
function, a series, and such.) The two wildcards are …
and .. described and illustrated in the next table.

The following example explains the need for wildcards

in this set. If the content is f(x+5, 2+y+z, z^2-5*z) and
the user wants to write a query that looks for a function f
where the last argument is z^2-5*z and not really know
the exact number of arguments, the previous set of wild-
cards will only allow for f(--,z^2-5*z). That query will
not retrieve the content since "--" will stand for a single
argument. Clearly there is a need for a new set of wild-
cards that allows the user to specify more than one argu-
ment. When the user enters f(.., z^2-5*z), the content will

be retrieved because the search will be for function f with
at least two arguments where the last one is z^2-5*z.

Table 3. Sequence-level and parse tree-level wildcards

Symbol and its meaning

• The wildcard “..”: stands for one or more consecu-
tive members in a sequence, or one or more consecu-
tive nodes at the same level in a parse tree.

Examples:

matrix(;..,x+1,..) will search for x+1 in the second
row of the matrix irrespective of its column location.

matrix(..) will search for matrices with a single col-
umn.

matrix(a+--+b,c+--+d,..,15) will retrieve this vector ma-
trix(a+f(2,3)+b, c+4+d, 12, 13, 15)
• The wildcard “…”: stands for zero or more consecu-

tive members in a sequence, or one or more consecu-
tive nodes at the same level in a parse tree.

Examples:

f(x,…) matches a function f with at least one argu-
ment x, such as f(x,y), f(x,z^2,y) and f(x).

matrix[;…,x+1,…] matches any matrix where x+1 is
in the second row irrespective of its column location.

Algorithm for processing sequence-level and parse tree-
level wildcards:
The following are the steps needed when processing a se-
quence of members. For example, matrix(a+--+b, c+--
+d,.., 15) or f(x, .. , y , z , …)

When creating an XPath expression to search for a se-

quence of members, the search will be for those members
at certain positions as specified in the user query. In the
algorithm below, "position" is the specific position where
the member should be in the math expression tree for that
document to be retrieved.

1. if the sequence starts with a non-wildcard member:

• create sub-XPath expression for that member set-
ting its position to start position

• until a wildcard is reached, create a sub-XPath
expression for each following member setting
their position relative to previous position

2. if the first member is a wildcard:
• if .. set pos' to position+1
• if ... set pos' to position

3. if other members follow
• create sub-XPath expression for that member at

position > pos'

• until a wildcard or end of sequence is reached,
create a sub-XPath expression for each following
member so that it immediately follows the previ-
ous member

• if end of sequence is reached, restrict the posi-
tion of the last member to be the last member of
the sequence

• if wildcard is reached go to step 2

Pos' is the new position value that will be created de-

pending on the wildcard that is being processed. The ".."
wildcard mean that at least one member must exist in that
position. This means that the incremental value will be 1.
In the case of the "…" because it stands for zero or more
members in that sequence, pos' can be the current posi-
tion. Capturing pos' is important since members that fol-
low the wildcard will have an XPath expression that looks
for members where their position is greater than pos'

Separator Symbols In argument lists, sequences, and in
matrices, different kinds of separators are used. The query
language provides explicit symbols for separators, with
definite semantics. The next table defines three separator
symbols that when used with wildcards, support for struc-
tural search becomes possible.

Table 4. Seperator symbols

Symbol Meaning

, Is used to separate entries in a sequence, or
arguments of a function. In the context of
matrices, it is used to separate columns.

; Separates rows in the context of matrices.
For example, matrix[;;] matches any three-
row matrix, regardless of its content.

@ Indicates function application. For example,
@(x+1) matches any function where its ar-
gument is x+1.

Support for Structural Search Through the use of wild-
cards and separator symbols, the math query language of-
fers support for structural search. This is done by allow-
ing the user to specify where in an expression a term or
phrase must occur, and to specify part of the expression
and not the whole expression. Support for structural
search gives the user math query more expressive power.
• The @ symbol directs the search to arguments of a

function. For example, the query @(x, y) will look for
a function where the arguments are x and y.

• The semi colon directs the search in the rows of a ma-
trix.

• The comma directs the search in arguments of a func-
tion or entries of a column of a matrix.

• The use of the dot symbols ("…") in combination with
other symbols helps the user specify where in the struc-
ture to look. The dot symbols can be used to surround
an expression to search for subparts. For example,
/(…x+1…) will search for x+1 somewhere in a de-
nominator. In this example, the query is looking for
x+1 where several terms can precede it and several
terms can follow it. In essence, x+1 is part of a sub-
expression that forms the denominator. If the query is
(x+1)/, the search will be for x+1 as the numerator. As
another example, ^(…n…) is a query that looks for n
as part of an exponent. While _{…n…} is a query that
looks for n to be in a subscript.

Algorithm for processing the use of the … symbol to sup-
port structural search:

When encountering an expression exp' that is sur-
rounded by the … symbols, an XPath expression will be
created to search for the exp' as a descendent of the over-
all expression's tree structure.

Support for Different Levels of Abstraction The $
symbol when used alone stands for any arbitrary term,
whether a numeric value or a variable name, and of what-
ever data type. This creates the first level of abstraction
in the query language by allowing the user to step away
from the literal specification of the term. Multiple occur-
rences of $ in a query in this case will stand for arbitrary
terms that may or may not be the same. For example, the
query $^2+$^2=20 makes no distinction between the arbi-
trary terms and can be matched by x^2+y^2=20, by
x^2+x^2=20, and 2^2+4^2=20.

However, if the user wishes to search for patterns that

match cos^2 $ + sin^2 $ with the additional constraint that
the two arbitrary terms intended by the two occurrences
of "$" must be equal, the use of cos^2 $ + sin^2 $ will be
wrong because it matches cos^2 x + sin^2 y . Clearly, the
use of the $ wildcard alone is inadequate to express that
particular math search need. Consequently, a new syntax
is added as specified in the following grammar rule:

WildcardTerm ::= $[1|2|3|...][‘n’|‘v’][‘R’|‘Z’|‘Q’|‘C’|‘P’|‘F’]

Here is the explanation of this syntax. The syntax $ fol-

lowed by a number (e.g., $1 $2, $3, etc.) designates any
arbitrary term, whether a numeric value or a variable
name, and of whatever data type. If $1 occurs twice in a
query, that means that the two occurrences stand for the
same number or the same identifier. If $1 ad $2 occur in
a query, then they stand for arbitrary tokens that need not
be the same. Referring back to the previous example,
cos^2 $1 + sin^2 $1 will be used instead where it is now
clear that the user is searching for an expression where the
terms are arbitrary but equal. In essence, this syntax sup-
ports a second level of abstraction (or specificity, to be
precise). Not only is the user being separated from a par-

ticular literal meaning but the user can now specify if the
arbitrary symbols are identical or independent within the
same expression.

The third level of abstraction-specificity is the enabling

of the user to specify if the term is a numeric arbitrary
value or an arbitrary variable name by attaching the ap-
propriate symbol to the $. The syntax $n stands for an ar-
bitrary term that is a numeric value such as 2, 4, 3.14, and
so on, while $v stands for an arbitrary term that is a vari-
able such as a, x, y, etc. For example, the query
$n+$n^2+$n^3 is matched by 2+2^2+2^3 and by
4+5^2+7^2, but is not matched by x+3^2+y^3 because x
and y are not numeric tokens.

Combing different parts of the rule with the $ is possi-

ble and has the combined effect. In this case, the user is
able to specify if arbitrary numeric values or variable
names need to be identical or independent in a query. For
example, if you need to specify a query with three or
more arbitrary numerical terms, and two of which must be
identical, and the third is not necessarily identical to the
other two, the user then uses $1n and $2n (and so on) to
stand for potentially different numeric terms. The query
$1n+$1n^2+$2n^3 describes that request and is matched
by 2+2^2+15^3 and by 2+2^2+2^3; but it is not matched
by 4+5^2+7^3 because 4 and 5 are not identical numerical
tokens.

If the user wishes to specify the data type of the term,

then the appropriate symbol from {R, Z, Q, C, P, F} is
appended. This syntax creates support for the yet another
level of abstraction-specificity. For example, $nZ stands
for any arbitrary integer numerical token, $vC stands for
any arbitrary identifier of Complex data type, $1vR and
$2vR stand for any two arbitrary identifiers of type real.

Content MathML does allow its numeric and identifier
elements to have more data types than those offered by
our Query Language. But for purposes of this research,
the data type symbols will be limited to: R for real, Z for
integer, Q for rational, C for complex, P for complex-
polar, and F for function.

Algorithm for processing different levels of abstraction-
specificity:
"singleToken" will be a term that satisfies the wildcard
rule designed for the support of different levels of abstrac-
tion.

1 if singleToken is $ and does not contain 'n' or 'v'

• create sub-XPath expression that search for an
item that is either a numeric value or an identi-
fier

2 else if singleToken contains 'n' or 'v'
• if 'n' create sub-XPath expression that search for

an item that is a numeric value
• if 'v' create sub-XPath expression that search for

an item that is an identifier

3 if singleToken contains 'R' 'Z' 'Q' 'C' 'P' or 'F'
• add a condition to the sub-XPath expression to

search for a particular type according to the
symbol used

4 if singleToken contains a number
• retrieve item
• store singleToken, item pair

After execution of XPath/XQuery query the "singleTo-
ken, item" pairs need to be analyzed:

5 if any two pairs have identical singleToken values,

the items must be identical; if not, the mathematical
expression retrieved is not an accurate result

6 if any two pairs have different singleToken values,
the items must not be identical; if not, the mathemati-
cal expression retrieved is not an accurate result

A Note on Ellipsis The ellipsis (…), is an important
mathematical symbol that stands for implicit patterns in
sequences, series and matrices. We refer to the ellipsis
symbol that is commonly used in mathematics as pattern-
bound ellipsis. For example: in the sequence 2, 4, 6, …,
2n the … stands for even numbers. While in the series 1
+ x/1! +x2/2! + x3/3! + …, the … stands for the pattern
xn/n!.

Our math query language, however, offers limited sup-

port for this symbol. The ellipsis is not assigned a hidden
pattern and no attempt is made to determine the hidden
pattern will be made during the processing of the user
search query. The symbol is used as a generic search
term at the sequence level to stand for any node that
doesn’t need to resemble in pattern the following or pre-
vious members in that sequence. The ellipsis in this case
is referred to as unbounded.

Unbounded ellipses are used in the math query lan-

guage horizontally between separator symbols in the con-
text of matrices. When used between commas it indicates
zero or more rows. But when used between semi-colons
its use is similar to the use of the vertical ellipsis symbol
and stands for zero or more rows. The language doesn’t
support the diagonal or anti-diagonal unbounded use of
the ellipses in the context of matrices at this time.

In future extensions of the language, we will introduce

an elaboration of that syntax that will enable the user to
specify that the matches comply with the implied pattern
of the ellipses. This will be possible with the algorithmic
support that is currently underway for recognizing the pat-
terns implicit in ellipses in math expression, such as that
by Sexton and Sorge of the University of Birmingham
[11]. They are currently working on the development of
algorithms for the analysis of "abstract matrices". This
term defines a common class of matrices where under-
specified parts are denoted using the ellipses symbol (a
series of three dots) [11].

4 IMPLEMENTATION MATTERS

Our search approach is based on the emerging XML-

based technologies. This is a different approach than the
evolutionary approach employed by Youssef for the
DLMF project and by Minor for the Mathdex project.
User information needs described by the query language
will be processed to create an XML Query representation.
The XML Query will then be executed against math
documents that are encoded using a normalized form of
Content MathML. The definition of what constitutes a
normalized canonical form of user documents is an im-
portant issue. It is intended to resolve issues like nota-
tional equivalences as they relate to the use of Content
MathML and have impacted the processing of the user
math queries, but it is outside the scope of this paper.

The input to the math query processor is text. Each

user query is treated as an expression and entered as a
text. When the user query is parsed and broken into
"terms". The terms are classified as: operators, function
names, constructors names, separator symbols, grouping
symbols, wildcards, numbers, constants, and identifiers.

When parsed, mathematical constructs supported by

the language are classified based on how similar their
Content MathML encodings are in documents; the classi-
fication is not based on how similar to user math queries.
For example, functions and operators are treated the same
way during the query processing phase. The Content
MathML encoding represents the logical tree structures of
mathematical statements in documents. The XPath ex-
pression that is generated after parsing the user math
query will describe that structure. Our math query proc-
essor is currently work in progress.

5 LIMITATIONS

 We limited tree-level wildcards to single levels of the
tree. That is, each wildcard either stands for a node in the
logical structure of a mathematical expression tree or
stands for a full sub-set tree that represents a complete
sub-expression. For example, in an expression x+y*z, the
-- wildcard can stand for sub expression y*z resulting in
x+-- query while x--*z is currently not supported since the
query cannot be parsed correctly.

 In addition, the language offers limited semantic sup-
port of the ellipsis symbol. Future versions can take ad-
vantage of ongoing research on determining the implied
patterns of ellipses in various contexts.

 These limitations can be addressed in future implemen-
tations.

6 CONCLUSION AND FUTURE WORK

In this paper, the need for more wildcards in the area of
math search has been established. It defines a powerful
set of wildcards that provide for more precise structural
search and multi-levels of abstractions. We have devel-
oped algorithms for mapping the wildcards to their corre-
sponding XPath/XQuery queries. It is assumed that the
content is encoded in MathML.

Naturally, there are limitations, which were discussed

in some detail. Future work entails lifting those limita-
tions and providing new extensions to the language for
more precision and more expressive power. Further into
the future, both subjective and objective performance
evaluation of our algorithms should be conducted to de-
termine user satisfaction and measure improvements in
precision and recall.

7 REFERENCES

[1] NIST, "Digital Library of Mathematical Functions (DLMF)."
 http://dlmf.nist.gov/.
[2] Design Science, "Mathdex."
 http://www.mathdex.com:8080/mathfind/search.
[3] World Wide Web Consortium, "XML Path Language

(XPath) Version 2.0," 2005.
 http://www.w3.org/TR/xpath20/.
[4] World Wide Web Consortium, "XQuery 1.0: An XML

Query Language," 2007. http://www.w3.org/TR/xquery/.
[5] World Wide Web Consortium, "Mathematical Markup Lan-

guage (MathML) Version 2.0," 2003.
http://www.w3.org/TR/MathML2/.

[6] C. Winstead, "Creating Connexions Content Using LyX
module," Connexions Project, Rice University, 2006.
http://cnx.org/content/m13238/latest/

[7] B. Miller, "DLMF, LaTeXML and some lessons learned,"
In: The Evolution of Mathematical Communication in the
Age of Digital Libraries, IMA "Hot Topic" Workshop, 2006.
http://www.ima.umn.edu/2006-2007/SW12.8-
9.06/abstracts.html#Miller-Bruce

[8] B. R. Miller and A. Youssef, "Technical Aspects of the Digi-
tal Library of Mathematical Functions," In: Annals of Mathe-
matics and Artificial Intelligence, 38(1-3): p. 121-136,
Springer Netherlands, 2003.

[9] Design Science. http://www.dessci.com/en/.
[10] The Wolfram Functions Site.

http://functions.wolfram.com/
[11] A. Sexton and V. Sorge, "Abstract matrices in symbolic

computation Computations," In: Proceedings of the 2006 in-
ternational symposium on Symbolic and algebraic computa-
tion, p. 318-325, ACM Press, New York, 2006.

[12] W. A. Martin, "Computer input/output of two-dimensional
notations," In: Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, p. 102-103, ACM
Press, New York, 1971.

[12] W. A. Martin, "Computer input/output of two-dimensional
notations," In: Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, p. 102-103, ACM
Press, New York, 1971.

[13] A. Youssef and M. E. Altamimi, "An Extensive Math
Query Language," Due to appear in: Proceedings of 16th In-
ternational Conference
on Software Engineering and Data Engineering, ?(?): p. ?-?,
2007.

