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Abstract 

     Math search is a new area of research with many ena-
bling technologies but also many challenges.  Some of the 
enabling technologies include XML, XPath, XQuery, and 
MathML.  Some of the challenges involve enabling 
search systems to recognize mathematical symbols and 
structures.  Several math search projects have made con-
siderable progress in meeting those challenges.  One of 
the remaining challenges is the creation and implementa-
tion of a math query language that enables the general us-
ers to express their information needs intuitively yet pre-
cisely.  A new query language that extends the current 
standard query syntax has been developed.  An important 
feature of the math query language is the introduction of a 
powerful set of wildcards that are deemed important for 
math search.  These wildcards provide for more precise 
structural search and multi-levels of abstraction.  This pa-
per will present three sets of wildcards and discuss their 
implementation details.     
 
1 INTRODUCTION 
 

The need to facilitate scientific information exchange 
between researchers has resulted in the creation of a 
growing number of specialized mathematical library pro-
jects around the world.  These projects aim to make scien-
tific literature available on the Web.  With the increasing 
online availability of electronic documents that contain 
mathematical expressions, the ability to find relevant in-
formation has become increasingly important.  Yet, sup-
port for searching for mathematical expressions is only in 
its infancy.  

 
The development of math search capabilities is a new 

area of research with many technical challenges.  Some of 
the challenges involve enabling search systems to recog-
nize mathematical symbols and structures.  Several math 
search projects have made considerable progress in meet-
ing those challenges.  Several research projects on math 
search have addressed many of the issues and challenges 
in math search. Notable among those math-search projects 
are the math search of the DLMF project at NIST [1], and 
the math search system of Design Science [2].  

 
The query languages assumed or implemented in those 

systems follow primarily the same syntax as standard text 
search.  That syntax consists mainly of Boolean query op-

erators (i.e., "and", "or", and "not") and phrase operators.  
Phrase queries are important in math search since math 
expressions and fragments of expression are meant to be 
sequences of consecutive terms, that is, phrases.  The 
standard syntax however, provides for a limited use of 
wildcards, namely, "?" and "*".  The first stands for one 
arbitrary character inside a keyword, and the second 
stands for zero or more arbitrary characters inside a key-
word.  

 
Such wildcard syntax is severely limiting in math 

search.  For example, there is a need for additional wild-
cards to stand for any number of rows or columns when 
searching for a matrix, and for wildcards to specify sub-
parts of a mathematical expression.  Also, if a user does 
not care what certain terms are (such as variable names) 
but cares that two or more of those terms are identical, the 
standard query syntax is inadequate to express such a 
need. 

 
A new query language that extends the current stan-

dard query syntax has been developed [13]. The language 
describes the user’s information needs by allowing the au-
thoring of different types of queries and allowing the use 
of an expanded set of wildcards.  The expanded set of 
wildcards will enable science and math users to specify 
their information needs in a more precise way to guaran-
tee that the matches are more relevant to their needs.  In 
addition to character-level wildcards, two new sets of 
wildcards are introduced. The new sets handle search at 
the parsed tree level of a mathematical structure.  They 
will allow the user greater levels of expression. 

 
This paper focuses on the powerful set of wildcards 

proposed by the query language in [13] and describes 
their implementation algorithms.  The implementation of 
the language maps queries written in that language into 
XPath/XQuery queries [3, 4].  It is assumed that the math 
content is in Content MathML [5].  The justification for 
this assumption is based on current technological ad-
vances and expected future practices.  For example, many 
conversion tools already exist for converting LaTeX to 
MathML, such as the Rice University tool for conversion 
to Content MathML [6], and Bruce Miller’s LaTeXML 
and associated software [7], which convert from LaTeX 
to a special XML syntax that includes presentation 
MathML and some content mark up. Furthermore, as the 



math authoring community becomes more comfortable 
with MathML and, more importantly, becomes more con-
vinced of the need for and benefits of Content MathML, 
more conversion tools and authoring tools that yield Con-
tent MathML will become available and more dominantly 
used. 

 
2 BACKGROUND AND RELATED 

WORK 
 

This section surveys work related to equation-based 
math search systems and the user query languages they 
offer.  Mainly query languages developed for the DLMF 
project, Design Science search system, and Mathematica, 
will be described and particular emphasis will be on their 
limited wildcard capabilities.  The section also describes 
briefly our proposed query language in [13] to put the dif-
ferent sets of wildcards in context.     

 
DLMF and Mathdex 
 

Youssef et al. [8] developed the first generation of an 
equation-based math search system as part of the Digital 
Library of Mathematical Functions [1] (DLMF) project at 
NIST.  The DLMF project provides an online source of 
mathematical content such as formulas and graphs, and 
allows for the search and retrieval of that content [8].  The 
mathematical content of DLMF, originally in LaTeX, is 
converted to html and xhtml using the LaTeXML markup 
language and software tool developed at NIST.  Youssef, 
who is developing the search system for DLMF, opted for 
an evolutionary approach, building on the existing text 
search technology. As a result, the query language syntax 
is almost identical to text search syntax, with the added 
power of recognizing mathematical symbols and struc-
tures to a great extent.  

 
Mathdex [2] is a web-based search engine developed 

by Design Science [9] as part of an NSF grant to facilitate 
equation-based search.  Mathdex indexes not only LaTeX 
but also Presentation MathML, and it crawls the Web 
looking for Math contents and indexing them.  Like the 
DLMF search, Mathdex follows an evolutionary approach 
by utilizing text search technology.  

 
Even though text search technology has reached a high 

level of maturity, it cannot fully capture all of the charac-
teristics inherent in mathematical content.  As a result, the 
query language developed for the DLMF project has lim-
ited expressive power when the user is trying to look for 
patterns within mathematical structures.  For example, if a 
user wants to look for an expression where "x^2+1" is 
somewhere in the denominator without caring exactly in 
the denominator, a user should be able to write the fol-
lowing query "/(…x^2+1…)" using the ... wildcard; un-
fortunately, this is not possible using the DLMF search 
system or Mathdex.  As another example, consider the 
situation where a user wishes to specify a query that con-

tains cos^2 x+sin^2 x and indicate that the variable x 
could be any other symbol, the best that can be done cur-
rently is to write cos^2 $+sin^2 $, where "$" is a wildcard 
that stands for any arbitrary string of characters; this, 
however, fails to enforce that the two wildcards must 
stand for the same variable name.    

 
Mathematica Search 
 

Wolfram research offers a large online repository of 
mathematical functions and formulas [10] encoded in dif-
ferent formats: Mathematica’s standard format, MathML 
and ASCII.  Mathematica offers an experimental search 
tool that allows the user to specify the terms (functions, 
numbers, constants, operations) in the query, using drop 
down menus.  The user can also specify options to filter 
the search results based on function types (elementary 
functions only or integer functions only).  The use of drop 
down menus allows the user to create more complex que-
ries by using Boolean AND and OR.  The user is able, 
however, to search for Mathematica patterns using the 
Mathematica language, which eliminates ambiguities in-
herent in mathematical notation.  The language covers a 
wider range of mathematics than our proposed math user 
query language.  However, it only offers basic support of 
structural search and wildcards, and thus suffers the same 
limitations of text-based search systems mentioned above. 

 
An Extensive Math Query Language  
 

Mathematical notation can be ambiguous and cumber-
some to type.  The math query language presented in [13] 
offers an alternative way to describe mathematical ex-
pressions that are more consistent and less ambiguous 
than conventional mathematical notation.  The syntax is 
intuitive and covers notation that is commonly used when 
possible.  However, the language is by no means com-
plete.  The language focuses on mathematical notation 
that is commonly used and supported by Content 
MathML 2.0 in the areas of arithmetic, algebra, calculus, 
etc.  In addition, syntax to handle notation that Youssef 
and others didn’t cover but will benefit the math search 
community is developed for matrices, ordinary and partial 
differential equations, integration, and function composi-
tion.  More importantly, a more comprehensive set of 
wildcard symbols is introduced, which will enable the 
creation of more complex queries that specify subparts of 
an expression, and which will provide for more support of 
abstraction and structured search.  The end result is an 
ASCII language that makes unambiguous use of symbols 
and has a well-defined grammar.   

 
    As mentioned earlier, there are additional features and 
syntax that are possible with the XML-query approach but 
not easily implementable by text-IR approach.  Table 1 il-
lustrates that point with a few examples.  For a more de-
tailed description of the characteristics of our proposed 
query language, please refer to [13].   



Table 1. User math queries in different areas of math 

Type Query Example and Explanation

Matrices 
 

Matrix[;;...a,b...] 
Look for a,b somewhere in the 
third row of a matrix.  In the con-
text of matrices, the comma (,) is 
used to separate columns while 
the semi-colon(;) is used to sepa-
rate rows.    

Partial  
Differentiation 

D_{x^2,y^3}(expr) 
Look for the fifth partial deriva-
tive of an expression for 2 times 
with respect to x and 3 times with 
respect to y 

Function  
Composition 

f\og 
Look for f composed with g  

 
3 WILDCARDS 
 

Wildcards in the area of text search such as "*" and "?" 
stand for multiple characters and a single character within 
a single keyword.  As argued earlier, these wildcards are 
very inadequate, and new wildcards are needed.  For ex-
ample, there is a need for additional wildcards to stand for 
any number of rows or columns when searching for a ma-
trix, and for wildcards to specify subparts of a mathemati-
cal expression.   

 
Two new sets of wildcards are introduced to help cap-

ture user needs in the area of math search: term-level 
wildcards and sequence-level wildcards.  These two sets 
are discussed next; for completeness, the commonly used 
wildcards are described first.  
 
Character Level (keyword search): This is the com-
monly used set of wildcards: "$" and "?".  The wildcard 
“$” is the same as the more familiar “*”, but it is used in-
stead of “*” because the latter is used as the symbol for 
multiplication. The processing of wildcards at the charac-
ter level is done through pattern matching algorithms. 
 
Term Level (tree search): From the previous set, the $ 
can be used to stand for a single arbitrary term but this is 
not sufficient; wildcards that stand for a sequence of 
terms are needed.  The following wildcards are introduced 
that allow the user to search for a sub-tree in the tree 
structure of mathematical expressions. 

Table 2. Term-level wildcards 

Symbol and its meaning 

• The wildcard “$”: when used alone, it stands for any 
arbitrary single term, which can be a variable, a num-
ber, a matrix name, a function name, an operator 
name, a set name, and so on.  For example, f($) 
matches a function f with exactly one argument that is 

a single term.  As a result, f(x) will be retrieved but 
not f(x^2). 

 
Another example, $ + 2 is a query that will retrieve 
3+2 as well as x+2 but not (3*4)+2 since 3*4 is not a 
single term but a group of terms that form a sub-
expression. 

 

• The wildcard “- -”: stands for one or more terms.  
This means something must exist, either a single term 
or a sub-expression.  For example, f(x, --) will match 
a function f with exactly two arguments where the 
first is x and the second can be a single term or an ex-
pression.   As a result, f(x, y) and f(x, y^2) will be re-
trieved but not f(x).  Note, on the other hand, that f(x, 
$) matches functions f with two arguments where the 
second must be a single term.  

Another example, matrix(--,x+1) will look for x+1 in 
the last column in matrices that have exactly two col-
umns.  While matrix(--) matches any matrix with one 
row and one column irrespective of the nature of that 
entry.   

Another example, --+-- matches sin+cos, A+B, and 
matrix(a,b; c,d)+ matrix(1,2; 3,4) among others.  

Note: -- will also be used to support structural search, 
which will be discussed later. 

  
 

Processing these two wildcards is relatively straight-
forward.  When encountering $ the search will be for a 
term that is either an identifier or numeric value.  When 
encountering -- the search is for the "existence" of a sub-
expression (sub tree in the expression tree).   

 
Sequence-level and parse tree-level wildcards: The two 
wildcards in this set will match zero-or-more, or one-or-
more members in a sequence, or more generally, for zero-
or-more/one-or-more nodes at the same level in a parse 
tree.  A new wildcard that searches for exactly one mem-
ber will not be considered since "--" from the previous set 
of wildcards can stand for a single member. (Note that a 
sequence can be a vector, a sequence of arguments of a 
function, a series, and such.) The two wildcards are … 
and .. described and illustrated in the next table. 

 
The following example explains the need for wildcards 

in this set.  If the content is f(x+5, 2+y+z, z^2-5*z) and 
the user wants to write a query that looks for a function f 
where the last argument is z^2-5*z and not really know 
the exact number of arguments, the previous set of wild-
cards will only allow for f(--,z^2-5*z).  That query will 
not retrieve the content since "--" will stand for a single 
argument.  Clearly there is a need for a new set of wild-
cards that allows the user to specify more than one argu-
ment.  When the user enters f(.., z^2-5*z), the content will 



be retrieved because the search will be for function f with 
at least two arguments where the last one is z^2-5*z. 

Table 3. Sequence-level and parse tree-level wildcards 

Symbol and its meaning 

• The wildcard “..”: stands for one or more consecu-
tive members in a sequence, or one or more consecu-
tive nodes at the same level in a parse tree.   
 

Examples:  

matrix(;..,x+1,..) will search for x+1 in the second 
row of the matrix irrespective of its column location. 

matrix(..) will search for matrices with a single col-
umn.    

matrix(a+--+b,c+--+d,..,15) will retrieve this vector ma-
trix(a+f(2,3)+b, c+4+d, 12, 13, 15) 
• The wildcard “…”: stands for zero or more consecu-

tive members in a sequence, or one or more consecu-
tive nodes at the same level in a parse tree.   

 
Examples: 

f(x,…) matches a function f with at least one argu-
ment x, such as   f(x,y), f(x,z^2,y) and f(x).   

matrix[;…,x+1,…] matches any matrix where x+1 is 
in the second row irrespective of its column location. 

 

Algorithm for processing sequence-level and parse tree-
level wildcards:   
The following are the steps needed when processing a se-
quence of members.  For example, matrix(a+--+b, c+--
+d,.., 15) or f(x, .. , y , z , …) 

 
When creating an XPath expression to search for a se-

quence of members, the search will be for those members 
at certain positions as specified in the user query.  In the 
algorithm below, "position" is the specific position where 
the member should be in the math expression tree for that 
document to be retrieved. 

 
1. if the sequence starts with a non-wildcard member: 

• create sub-XPath expression for that member set-
ting its position to start position 

• until a wildcard is reached, create a sub-XPath 
expression for each following member setting 
their position relative to previous position 

2. if the first member is a wildcard: 
• if ..  set pos' to position+1 
• if ... set pos' to position 

3. if other members follow 
• create sub-XPath expression for that member at 

position > pos'  

• until a wildcard or end of sequence is reached, 
create a sub-XPath expression for each following 
member so that it immediately follows the previ-
ous member 

• if end of sequence is reached, restrict the posi-
tion of the last member to be the last member of 
the sequence  

• if wildcard is reached go to step 2 
 
Pos' is the new position value that will be created de-

pending on the wildcard that is being processed.  The ".."  
wildcard mean that at least one member must exist in that 
position.  This means that the incremental value will be 1.   
In the case of the "…" because it stands for zero or more 
members in that sequence, pos' can be the current posi-
tion.  Capturing pos' is important since members that fol-
low the wildcard will have an XPath expression that looks 
for members where their position is greater than pos' 

   
Separator Symbols In argument lists, sequences, and in 
matrices, different kinds of separators are used. The query 
language provides explicit symbols for separators, with 
definite semantics.  The next table defines three separator 
symbols that when used with wildcards, support for struc-
tural search becomes possible.   

Table 4. Seperator symbols 

Symbol Meaning 

, Is used to separate entries in a sequence, or 
arguments of a function.  In the context of 
matrices, it is used to separate columns.   
 

; Separates rows in the context of matrices.  
For example, matrix[;;] matches any three-
row matrix, regardless of its content. 

@ Indicates function application.  For example, 
@(x+1) matches any function where its ar-
gument is x+1.   

 
Support for Structural Search Through the use of wild-
cards and separator symbols, the math query language of-
fers support for structural search.  This is done by allow-
ing the user to specify where in an expression a term or 
phrase must occur, and to specify part of the expression 
and not the whole expression.  Support for structural 
search gives the user math query more expressive power.   
• The @ symbol directs the search to arguments of a 

function.  For example, the query @(x, y) will look for 
a function where the arguments are x and y.   

• The semi colon directs the search in the rows of a ma-
trix.   

• The comma directs the search in arguments of a func-
tion or entries of a column of a matrix.   



• The use of the dot symbols ("…") in combination with 
other symbols helps the user specify where in the struc-
ture to look.  The dot symbols can be used to surround 
an expression to search for subparts.  For example, 
/(…x+1…) will search for x+1 somewhere in a de-
nominator.  In this example, the query is looking for 
x+1 where several terms can precede it and several 
terms can follow it.  In essence, x+1 is part of a sub-
expression that forms the denominator.  If the query is 
(x+1)/, the search will be for x+1 as the numerator.  As 
another example, ^(…n…) is a query that looks for n 
as part of an exponent.  While _{…n…} is a query that 
looks for n to be in a subscript.   

Algorithm for processing the use of the … symbol to sup-
port structural search: 

When encountering an expression exp' that is sur-
rounded by the … symbols, an XPath expression will be 
created to search for the exp' as a descendent of the over-
all expression's tree structure. 

 
Support for Different Levels of Abstraction The $ 
symbol when used alone stands for any arbitrary term, 
whether a numeric value or a variable name, and of what-
ever data type.  This creates the first level of abstraction 
in the query language by allowing the user to step away 
from the literal specification of the term.  Multiple occur-
rences of $ in a query in this case will stand for arbitrary 
terms that may or may not be the same.  For example, the 
query $^2+$^2=20 makes no distinction between the arbi-
trary terms and can be matched by x^2+y^2=20, by 
x^2+x^2=20, and 2^2+4^2=20.   

 
However, if the user wishes to search for patterns that 

match cos^2 $ + sin^2 $ with the additional constraint that 
the two arbitrary terms intended by the two occurrences 
of "$" must be equal, the use of cos^2 $ + sin^2 $ will be 
wrong because it matches cos^2 x + sin^2 y .  Clearly, the 
use of the $ wildcard alone is inadequate to express that 
particular math search need.  Consequently, a new syntax 
is added as specified in the following grammar rule:  

 

WildcardTerm ::= $[1|2|3|...][‘n’|‘v’][‘R’|‘Z’|‘Q’|‘C’|‘P’|‘F’]

 
Here is the explanation of this syntax. The syntax $ fol-

lowed by a number (e.g., $1 $2, $3, etc.) designates any 
arbitrary term, whether a numeric value or a variable 
name, and of whatever data type. If $1 occurs twice in a 
query, that means that the two occurrences stand for the 
same number or the same identifier.  If $1 ad $2 occur in 
a query, then they stand for arbitrary tokens that need not 
be the same.  Referring back to the previous example, 
cos^2 $1 + sin^2 $1 will be used instead where it is now 
clear that the user is searching for an expression where the 
terms are arbitrary but equal.  In essence, this syntax sup-
ports a second level of abstraction (or specificity, to be 
precise).  Not only is the user being separated from a par-

ticular literal meaning but the user can now specify if the 
arbitrary symbols are identical or independent within the 
same expression.  

 
The third level of abstraction-specificity is the enabling 

of the user to specify if the term is a numeric arbitrary 
value or an arbitrary variable name by attaching the ap-
propriate symbol to the $.  The syntax $n stands for an ar-
bitrary term that is a numeric value such as 2, 4, 3.14, and 
so on, while $v stands for an arbitrary term that is a vari-
able such as a, x, y, etc.  For example, the query 
$n+$n^2+$n^3 is matched by 2+2^2+2^3 and by 
4+5^2+7^2, but is not matched by x+3^2+y^3 because x 
and y are not numeric tokens.  

 
Combing different parts of the rule with the $ is possi-

ble and has the combined effect.  In this case, the user is 
able to specify if arbitrary numeric values or variable 
names need to be identical or independent in a query.  For 
example, if you need to specify a query with three or 
more arbitrary numerical terms, and two of which must be 
identical, and the third is not necessarily identical to the 
other two, the user then uses $1n and $2n (and so on) to 
stand for potentially different numeric terms.  The query 
$1n+$1n^2+$2n^3 describes that request and is matched 
by 2+2^2+15^3 and by 2+2^2+2^3; but it is not matched 
by 4+5^2+7^3 because 4 and 5 are not identical numerical 
tokens. 

 
If the user wishes to specify the data type of the term, 

then the appropriate symbol from {R, Z, Q, C, P, F} is 
appended.  This syntax creates support for the yet another 
level of abstraction-specificity.  For example, $nZ stands 
for any arbitrary integer numerical token, $vC stands for 
any arbitrary identifier of Complex data type, $1vR and 
$2vR stand for any two arbitrary identifiers of type real.  

Content MathML does allow its numeric and identifier 
elements to have more data types than those offered by 
our Query Language.  But for purposes of this research, 
the data type symbols will be limited to: R for real, Z for 
integer, Q for rational, C for complex, P for complex-
polar, and F for function.   

Algorithm for processing different levels of abstraction-
specificity: 
"singleToken" will be a term that satisfies the wildcard 
rule designed for the support of different levels of abstrac-
tion. 

 
1 if singleToken is $ and does not contain 'n' or 'v' 

• create sub-XPath expression that search for an 
item that is either a numeric value or an identi-
fier 

2 else if singleToken contains 'n' or 'v' 
• if 'n' create sub-XPath expression that search for 

an item that is a numeric value  
• if 'v' create sub-XPath expression that search for 

an item that is an identifier 



3 if singleToken contains 'R' 'Z' 'Q' 'C' 'P' or 'F'  
• add a condition to the sub-XPath expression to 

search for a particular type according to the 
symbol used 

4 if singleToken contains a number 
• retrieve item  
• store singleToken, item pair  

 
After execution of XPath/XQuery query the "singleTo-
ken, item" pairs need to be analyzed: 

 
5 if any two pairs have identical singleToken values, 

the items must be identical; if not, the mathematical 
expression retrieved is not an accurate result 

6 if any two pairs have different singleToken values, 
the items must not be identical; if not, the mathemati-
cal expression retrieved is not an accurate result 

 
A Note on Ellipsis The ellipsis (…), is an important 
mathematical symbol that stands for implicit patterns in 
sequences, series and matrices.  We refer to the ellipsis 
symbol that is commonly used in mathematics as pattern-
bound ellipsis.  For example: in the sequence 2, 4, 6, …, 
2n the … stands for even numbers.  While in the series 1 
+ x/1! +x2/2! + x3/3! + …, the … stands for the pattern 
xn/n!.   

 
Our math query language, however, offers limited sup-

port for this symbol.  The ellipsis is not assigned a hidden 
pattern and no attempt is made to determine the hidden 
pattern will be made during the processing of the user 
search query.  The symbol is used as a generic search 
term at the sequence level to stand for any node that 
doesn’t need to resemble in pattern the following or pre-
vious members in that sequence.  The ellipsis in this case 
is referred to as unbounded.   

 
Unbounded ellipses are used in the math query lan-

guage horizontally between separator symbols in the con-
text of matrices.  When used between commas it indicates 
zero or more rows.  But when used between semi-colons 
its use is similar to the use of the vertical ellipsis symbol 
and stands for zero or more rows.  The language doesn’t 
support the diagonal or anti-diagonal unbounded use of 
the ellipses in the context of matrices at this time.   

 
In future extensions of the language, we will introduce 

an elaboration of that syntax that will enable the user to 
specify that the matches comply with the implied pattern 
of the ellipses.  This will be possible with the algorithmic 
support that is currently underway for recognizing the pat-
terns implicit in ellipses in math expression, such as that 
by Sexton and Sorge of the University of Birmingham 
[11]. They are currently working on the development of 
algorithms for the analysis of "abstract matrices".  This 
term defines a common class of matrices where under-
specified parts are denoted using the ellipses symbol (a 
series of three dots) [11].   

 
4 IMPLEMENTATION MATTERS 

 
Our search approach is based on the emerging XML-

based technologies.  This is a different approach than the 
evolutionary approach employed by Youssef for the 
DLMF project and by Minor for the Mathdex project.  
User information needs described by the query language 
will be processed to create an XML Query representation.  
The XML Query will then be executed against math 
documents that are encoded using a normalized form of 
Content MathML.  The definition of what constitutes a 
normalized canonical form of user documents is an im-
portant issue.  It is intended to resolve issues like nota-
tional equivalences as they relate to the use of Content 
MathML and have impacted the processing of the user 
math queries, but it is outside the scope of this paper.       

 
The input to the math query processor is text.  Each 

user query is treated as an expression and entered as a 
text.  When the user query is parsed and broken into 
"terms".  The terms are classified as: operators, function 
names, constructors names, separator symbols, grouping 
symbols, wildcards, numbers, constants, and identifiers.   

 
When parsed, mathematical constructs supported by 

the language are classified based on how similar their 
Content MathML encodings are in documents; the classi-
fication is not based on how similar to user math queries.  
For example, functions and operators are treated the same 
way during the query processing phase.  The Content 
MathML encoding represents the logical tree structures of 
mathematical statements in documents.  The XPath ex-
pression that is generated after parsing the user math 
query will describe that structure.  Our math query proc-
essor is currently work in progress.   
  
5 LIMITATIONS 
 
 We limited tree-level wildcards to single levels of the 
tree.  That is, each wildcard either stands for a node in the 
logical structure of a mathematical expression tree or 
stands for a full sub-set tree that represents a complete 
sub-expression.  For example, in an expression x+y*z, the 
-- wildcard can stand for sub expression y*z resulting in 
x+-- query while x--*z is currently not supported since the 
query cannot be parsed correctly.   

 
 In addition, the language offers limited semantic sup-
port of the ellipsis symbol. Future versions can take ad-
vantage of ongoing research on determining the implied 
patterns of ellipses in various contexts. 
 
 These limitations can be addressed in future implemen-
tations.  
    
6 CONCLUSION AND FUTURE WORK 
 



In this paper, the need for more wildcards in the area of 
math search has been established.  It defines a powerful 
set of wildcards that provide for more precise structural 
search and multi-levels of abstractions. We have devel-
oped algorithms for mapping the wildcards to their corre-
sponding XPath/XQuery queries. It is assumed that the 
content is encoded in MathML. 

 
Naturally, there are limitations, which were discussed 

in some detail. Future work entails lifting those limita-
tions and providing new extensions to the language for 
more precision and more expressive power.  Further into 
the future, both subjective and objective performance 
evaluation of our algorithms should be conducted to de-
termine user satisfaction and measure improvements in 
precision and recall. 
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