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Abstract ~ This paper examines the class of digit per-
mutation networks (DPN) which are banyan multistage
networks where the interconnections are operations that
permute bits or digits in a specified manner. It will be
shown that all DPN’s are efficiently controllable and func-
tionally equivalent to the baseline. The paper will also
present an efficient, parallel algorithm that relabels the
terminals of the baseline to simulate an arbitrary DPN.

Introduction

Banyan multistage interconnection networks (MIN’s)
are increasingly important in parallel computing systems.
Several MIN’s have been propused and studied, such as
omega and its inverse [2], the indirect binary n-cube [3],
the baseline [5], and the generalized cube network [4].

As MIN’s have the unique path property, they can be
self-routed via control tags, also called path descriptors.
The control efficiency depends then on the speed of control
tag computation. The class of networks where the control
tags from all sources to a certain destination are equal and
depend only on the destination address are then of spe-
cial importance. Such networks are called FD-controllable
networks in [6] and delta networks in (1]. The topological

structure of these networks was studied by the authors
of these two references independently and was shown to
be recursive. Furthermore, the subclass of doubly FD-
controllable networks (also called bidelta networks in [1])
was also studied in [1] and [6]. A network is doubly FD-
controllable if the network and its inverse are both FD-
controllable. It was shown in [6] and [1] that all FD-
controllable MIN’s are functionally equivalent to the base-
line. That is, given any doubly FD-controllable network
W, the terminals of the baseline can be relabeled so that
the latter network realizes the same permutations as W,

This paper examines the sub-class of r* x r* k-column
MIN’s with r x r crossbar switches and the interconnec-
tions between columns are digit permutations to be defined
later. These networks are called digit permutation net.-
works. The reason for studying this subclass is that it in-
cludes all existing banyan multistage networks (for r = 2)
and that digit permutation interconnections have a rich
structure and yield to mathematicsl analysis.

It will be shown that all digit permutation net-
works are doubly FD-controllable and therefore function-
ally equivalent to the baseline network. An efficient, paral-
lel algorithm that relabels the terminals of the baseline to
simulate another digit permutation network will be given.

Digit Permutation N etworks

An algebraic approach will be used to show that digit
permutation networks are doubly FD-controllable. A rela-
tion will be derived relating the input terminal, the output
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terminal and the control tag that establishes the path in
between. This relation will be used to find necessary and
sufficient conditions for k + 1 digit permutations to con-
struct a MIN that has the unique path property. Later
the control tags in digit permutation networks are shown
to be functions of the destination tags only. This makes
them FD-controllable. As the inverse of a DPN is 2 DPN s
it will be concluded that digit permutation networks are
doubly FD-controllable and hence functionally equivalent
to the baseline network.

Definition 1. A permutation fof Sy ={0,1,..,N — 1},
where N = r* isa digit permutation in the system of
base r if there exists a permutation 7 of Si ={0,1,...,k —
1} such that f(Zrog.zizg) = Ta(k=1)---Tx(1)Zn(g), Where
Tk—1.--Z1Z0 is an arbitrary k-digit r-ary label. In this case,
f is denoted f, and r is called the kernel of f,.

Definition 2. A digit permutation network, denoted

DPN( s, f1, ..;fk), is a k-column MIN with r x r switches

where the leftmost and rightmost interconnections are fo

and fi, the interconnection from column ¢ — 1 to column .
tis f;, for i = 1,..,k =1, and all the fi’s are digit per-

mutations of S,+ in the system of base r. Note that the

k columns of a MIN are labeled 0,1,....,k — 1 from left to
right.

Denote by Ei, where a is an r-ary digit and { =
0,1,k - 1, the following mapping from Sy to Sy:
E;(::k-l...mo) = Tge1..Ti41QT;_;...20. E! replaces the i-
th digit of its argument by a.

Next, the relation between an input terminal 3, an
output terminal d and the contro} tag ¢ = cx_ycp_s...c9 for
the path s — din a DPN(f,,o,f,,,,...,f,,‘) will be drived.
The digit cx_;_; controls column i for ¢ = 0,1,..,k—~1.
If the path s — d enters column i through input port
Tk1..-T3 Ty, it exits that column through the output port
Ti-1..-Z1ck—1-; which is equal to Egh_l_‘_(zk_l...zlzo).
Note that if the path exits column t— 1 through some out-
put port y, it then enters the next column, that is, ¢olumn
i, through input port fr.(y) because the interconnection
between column i ~ 1 and column 3 is fr,. We thus have:
Lemma 1. Ina DPN(fxo, fry» s fxy) an output ter-
minal d is related to an input terminal s and the con-
trol tag ¢ = Ck-1Ck—2...co for the path s — d by: d =
(S)ffroEgk_,f’nEg,,_,fngEgk__.,mEgofm,-

The E’s will be “fltered™ out to the right of the f’s
in the relation above, -

Lemma 2. f, 3 = fs, and Elfe = foEF O,

Lemma 3. Under the assumptions of Lemma 1 we
have d = (s)fa, BS VES O _ES'O wpere 5 -
T They... ;.

Proof. Let ¢ = f«uE’i’k_,an?._,mEf,fn._,Ei’ofn-
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By making repeated use of Lemima 2 on the expres-
sion of g (from right to left) we conclude that g =

- -1 -1
Fo ESLVEELO B ® . As d = g(s) (from Lemma
1), the lemma follows. 1

The necessary and sufficient conditions as well as the
relation between the control tag and the output terminal
can now be easily derived as follows.

Theorem 1. Let f,,, fris oo, and fp, be k +1 digit
permutations, and §; = mpmi_;...m;. Then:

(a) DPN(f,,o,f,l,...,f,,’) has the unique path property if
and only if 871(0), 877(0), ..., B7(0) are pairwise dis-
tinet . ~

(b) The control tag ¢ = cx—1ck—z...co for a path s = d in
DPN(fry, frys e fr, ) that has the unique path property is
¢ = f4(d), where y(i) = 8;,(0).

Proof. (a) Let s be an input terminal, d an output
terminal and ¢ = c¢yey...ck—; the control tag that estab-
lishes the path s — d. Let s' = f8o(s). By Lemma

-1 -1 -1
3, d = (ES_OES O EF®  The effect of each
)

cx-i 15 to replace the digit in position 87(0) of s’ by
Craj.

Assume first that the network has the unique path
property. If 71(0), 87%(0), ..., B:1(0) are not pairwise
distinct, then {87'(0), 87(0), ..., B:1(0)} is a proper
subset of {0,1,...,k — 1}, and therefore, there exists some
Jin {0,1,...,k — 1} such that j # B7Y(0) for all i. Con-
sequently, the digits in the j-th digit position of s’ and d
must always agree. It follows that for a fixed s, and thus
fixed s', no matter what control tag we use, we can never
reach any output terminal d whose j-th digit differs from
that of s'. This contradicts the unique path property.

Conversely, if 871 (0), 871(0), ..., B; 1 (0) are pairwise
distinct, then {77(0), ..., A7(0)} = {0,1,.... k — 1},
and therefore the mapping vy where (i) = B72.(0) is a
permutation of {0,1,...,k — 1}. Furthermore,

d= (s')Egjf;”Egjf;”...Eg;“)

implying that the digit in position ¥(i} of d is ¢;, that is,
Ak —1)dy(k=2---dy(0) = ChmyChoz...Co. Therefore, c = f.,(d)
andd = f,-:(c). As fy-1 is a permutation of Sy, it follows
that for a fixed input terminal s there corresponds to every
control tag ¢ one and only one output terminal. Therefore,
the network has the unique path property.

(b) The relation ¢ = f,(d) has just been proved in (b). g

Theorem 2. Every DPN network is functionally equiva-
lent to the baseline network.

Proof. Since the inverse of a DPN is a DPN and every
DPN is FD-controllable, it follows that every DPN is dou-
bly FD-controllable, and hence functionally equivalent to
the baseline network.

Theorem 2 supersedes the results in [4] and [5] about
the functional equivalence among existings MIN’s and
shows that this equivalence is no coincidence but follows
from the fact that the existing networks are DPN’s.

Baseline Simulation of Digit Permutation Networks

To simulate a network W = DPN(fxgy s fma) by the
baseline, the terminals of the latter need to be relabeleq
Note that the control tag to a destination d in W is fv(d),
where + is as given in theorem 1. Thus, if every outpy;
terminal d of the baseline is relabeled fy-1(d), the contre)
tags in both W and the bascline become identical. To
relabel the inputs of the baseline, we compute the v of W~
(call it T to avoid confusion). Every input s of the baseline
should be relabeled f,-:(s). These steps are summarizeq
below. . :

Procedure Simulate (W)

begin

(1) Compute v and then v~!;

(2) Compute 7 and then 7-1;

(3) Broadcast 7=! to all inputs and v~! to all outputs;
(4) fori =0to N — 1 do in parallel

(5) relabel input i of the baseline by f.-1(¢);
(6) relabel output i of the baseline by fy-1(i);
end

Time Complezity: Steps 1-2 can be shown to take
O(k?) each. Step 3 takes O(k). Steps 5 and 6 take O(k)
each as the relabeling of a node consists of permutating its
k digits. Thus, the procedure takes O(log? N).

Conclusions

This paper has examined the class of digit permu-
tation networks which includes all existing banyan multi.
stage networks. We have shown that every DPN is doubly
FD-controllable and hence functionally equivalent to the
baseline. An immediate consequence is that every digit
permutation network can be simulated by the baseline by
appropriately relabeling the terminals of the baseline. An
efficient algorithm for such relabeling was given.
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