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Abstract
To be effective and useful, math search systems must not only maximize preci-
sion and recall, but also present the query hits in a form that makes it easy for
the user to identify quickly the truly relevant hits. To meet that requirement,
the search system must sort the hits according to domain-appropriate relevance
criteria, and provide with each hit a query-relevant summary of the hit target.

The standard relevance measures in text search, which rely mostly on key-
word frequencies and document sizes, turned out to be inadequate in math
search. Therefore, alternative relevance measures must be defined, which give
more weight to certain types of information than to others and take into account
cross-reference statistics. In this paper, new, multi-dimensional relevance met-
rics are defined for math search, methods for computing and implementing them
are discussed, and comparative performance evaluation results are presented.

Query-relevant hit-summary generation is another factor that enables users
to quickly determine the relevance of the presented hits. Although the hit title
accompanied by a few leading sentences from the target document is simple
to produce, this often fails to convey to the user the document’s relevant ex-
cerpts. This shifts the burden onto the user to pursue many of the hits, and
read significant portions of their target documents, to finally locate the wanted
documents. Clearly, this task is too time-consuming and should be largely au-
tomated. This paper presents query-relevant hit-summary generation methods,
outlines implementation strategies, and presents performance evaluation results.

∗This work was done in part at the National Institute of Standards and Technology, USA,
as part of the DLMF Project.
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1 Introduction

Digital math libraries consist mostly of equations, graphs, tables, numerous
embedded mathematical expressions, and text. Clearly, users will need spe-
cialized search systems to find and locate quickly the math information that is
most relevant to their needs. A number of search systems have been built and
are undergoing further enhancements, such as the NIST DLMF search system
[13, 17, 18] and the Design Science’s Mathdex [10].

For enhanced utility and user-satisfaction, math search systems must not
only maximize precision and recall, but also present the query hits in a form that
makes it easy for the user to identify quickly the truly relevant hits. To meet
that requirement, the search system must sort the hits according to domain-
appropriate relevance criteria, and provide with each hit a query-relevant sum-
mary of the hit target.

The standard relevance measures in text search, which rely mostly on key-
word frequencies and document sizes, turned out to be inadequate in math
search. Therefore, alternative relevance measures must be defined, which give
more weight to certain types of information than to others, such as definitions,
theorems,“standard” functions and operators, and frequently referenced items.
In this paper, new, multi-dimensional relevance metrics are defined for math
search, methods for computing and implementing them are discussed, and com-
parative performance evaluation results are presented.

Query-relevant hit-summary generation, or simply hit packaging, is another
factor that enables users to quickly determine the relevance of the presented
hits, and thus determine the most relevant hits. Although the hit title, possibly
accompanied by a few leading sentences from the target document, forms a fast
and simple way for hit packaging, it often fails to convey to the user the docu-
ment’s relevant excerpts. This shifts the burden onto the user to pursue many of
the hits, and read significant portions of their target documents, to finally locate
the wanted documents. Clearly, this task is too time-consuming, and should be
done by the software on behalf of the user. This paper presents query-relevant
hit-summary generation methods, outlines implementation strategies, and shows
substantiating illustrations.

2 Background and Related Work

Three types of math search systems have received attention and/or have been
built. The first is field-based search systems, which are now widely deployed in
several mathematics databases and by many mathematical content providers,
such as Zentralblatt’s ZMATH and MathDi [19, 9], the Jahrbuch Database [6],
AMS’s MathSCiNet [1], and various professional mathematical socities. Such
systems are intended for conventional library search, and are outside the scope
of this paper. The second is formal-math search, such as the search systems
developed and researched by Guidi et al [4, 5], MoWGLI of the Helm project
[14], and MIZAR [2]. Formal-math search systems are highly specialized and
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usually intended for advanced mathematicians, and are thus outside the scope
of the paper.

The third type of math-search is math-aware fine-grain search such as the
DLMF search system [13, 17, 18], the Design Science’s Mathdex Web search
system [10, 11], and Mathematica search system [12]. This type of math search
is indended for general use by students, educators, researchers, and professionals,
in mathematics, physical sciences, and engineering. It is this kind of search that
requires further investigation for relevance ranking and hit packaging, which are
the focus of this paper.

Relevance scoring has received much research attention in text search for over
three decades [16, 15]. Although several relevance metrics have been developed
and studied, most are elaborations and variations of one central metric, often
referred to as the tf-idf metric (term frequency inverse document frequency).
Essentially, this metric is predicated on the assumptions that (1) the higher the
relative frequency of a query keyword in a hit document is, the more relevant the
document is, and (2) the more frequent a term is in the whole database, the less
important its occurrences are. One implication is that if two documents have
the same number of occurrences of the keywords but one is a smaller document
than the other, the smaller document ranks higher because its relative term-
frequency (i.e., number of keyword occurrences divided by the document size)
is larger.

Such traditional considerations are highly inadequate in math search. For
example, if the hit targets are equations, a smaller-size equation is not necessar-
ily more relevant or more important to the user. Also, in math, the frequency of
occurrence of a term is much less important than the mathematical significance
of that term. Finally, the importance of a term is context-dependent, especially
in math, as for example in what part of a math structure the term lies, and
what other terms the term co-occurs with.

The shortcomings of traditional relevance scores were recognized in Web
search, especially by Google. It was realized that the importance, and thus
relevance, of a document/page depends more on who publishes it, how many
links point to it, how many times it is visited, and such, than the “uninformed”
statistics of term frequencies and document sizes.

These same considerations can be utilized in math search, but after signifi-
cant adaptations and specialization to math contents. For example, the number
of times a particular math entity (e.g., equation) is referenced in a document/site
can be a very telling indication of the relative importance of that entity. In ad-
dition to cross-reference statistics, domain-specific term weighting can be taken
into account in relevance scoring, with great expected benefits. For example, if
a query includes among its keywords the term ”BesselI” and the variable name
“x”, then intuitively the first term is much weightier than the second term.

The relevance metrics used in the current generation of mostly experimental
math search systems are primarily identical to the ones used in conventional
text search, that is, the tf-idf metric. In this paper, alternative metrics are
developed and shown to yield better results.

The other subject of focus in this paper, which has an equal bearing on
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helping users find relevant information fast, is hit-description generation. Hit-
description generation, or hit packaging, has never been viewed as a major
issue in text search, and has thus been done in a rather simple way. Prior to
Web search, text search systems often reported each hit as a document title,
sometimes accompanied by a few leading sentences in the hit’s document. In
Web search, such as in Google, the hit package consists of the page title of the
hit, accompanied with 2–4 lines of sentences or sentence fragments that contain
the keywords of the query, usually highlighted.

As math search is still in its early experimental phases, where more pressing
issues have had to be addressed first, the same methods used in text search are
used by necessity, until more specialized alternatives are found. In Mathdex of
Design Science, the Web page title and the first couple of lines of the Web page
contents of the hit are displayed with the hit. As a significant enhancement, a
special button is added next to each hit, which when moused over, shows one
equation or math expression that made the page match the query. In early
experimental versions of DLMF search, two hit-packaging methods were used,
depending on the nature of the hit. If the hit target has a small amount of
contents, such as equations or even graphs and small-size tables, the entire target
content is presented in the hit itself, providing immediacy and directness. If, on
the other hand, the hit target is a section of a chapter, the hit description consists
of the section title and the chapter title. Mathematica search is somewhat
more advanced in providing hit descriptions. Like Google, Mathematica offers
with each hit about 2 lines of sentence fragments that contain query keywords.
Mathematica’s hit packaging may be adequate for Mathematica contents, which
tend to be short descriptions of functions or portions of code mixed with some
text, but it will not be sufficient for general-purpose math search.

Clearly, much more representative and query-relevant descriptions of hit
targets should be generated per math-hit. The reason is that the user will be
able to judge faster the value and relevance of the hit without having to pursue
many hits and read long passages in them before the valuable and truly relevant
information is found. Techniques generating such descriptions/summaries are
presnted in this paper.

3 Relevance Ranking in Math Search

Before the new relevance metrics are introduced and related considerations dis-
cussed, it is instructive to look at the standard tf-idf metric. For a query q and
a hit-target doicument d in some presumed database DB, the tf-idf relevance
metric value is:

Relevanceq(d) =
∑

query terms t

tf(t, d)× idf(t)

where

tf(t, d) =

√
frequency(t)

|d|
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and

idf(t) = log
|DB|

number of documents containing t
.

(|d| is the number of terms in document d, and |DB| is the number of documents
in the database.)

Note that the first factor, tf(t, d), represents the frequency of a term in the
document, normalized by the document size, and that the second factor, idf(t),
represents the inverse of the number of documents containing the term relative
to the total number of documents in the database. The square root and the log
are meant to attenuate the contributions of those factors to various degrees.

A deeper look into the formula reveals that the first factor attempts to
capture the importance (or weight) of the term t with respect to the document
d (and thus the relevance of the document relative to the term t), while the
second factor attempts to capture the weight of the term t with respect to the
database as a whole.

The paper will preserve this paradigm of expressing the relevance of a doc-
ument to a term in terms of of the weight of the term vis-a-vis the document
and the weight of the term vis-a-vis the database. What will change is the way
of measuring each of those factors; tf(t, d) will be replaced by a general term-
document weight function Weight(t, d), and idf(t) will be replaced by a term
weight function Weight(t), and a math object weight function Weight(mo)
will be introduced (where a math object can be a full document or some small
items such as an equation or even a sentence); all such weight functions will
be elaborated later. Furthermore, since various aspects will influence those
factors, ans some aspects are absolutely more important than others, it will be
determined that a multidimensional relevanace metric, which is then a relevance
vector, is a more apt way of measuring relevance and thus of sorting the hits.

As argued earlier, mere frequency and size statistics do not fully capture the
importance and relevance of documents. Rather, several other static (i.e., query-
independent) and dynamic (i.e., query-dependent) aspects have to be taken into
account when computing Weight(t, d), Weight(t) and Weight(d).

Static Weight Information

Many math terms have intrinsic importance due to what they stand for, and
some terms have more intrinsic importance than others. For example, special
function names stand for much more than a moot variable name. Similarly,
certain operators, such as integration (

∫
), exponentiation and division, are more

important than variable names. This type of intrinsic importance of terms in
themselves is called categorical importance. Categorical importance is a primary
determinant of the term-weight function Weight(t).

Accordinly, the term-weight function Weight(t) can be defined as follows:

Weight(t) = Quantify(Type(t)),

where
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• Type maps a term to a category based on some typology or taxonomy of
terms from a term-importance perspective. For example, the term cate-
gories can be “operator”, “special-function” and “regular” (for everything
else).

• Quantify is a mapping that maps a term-type into a positive real number
associated with that type, where the more important a type is, the larger
its associated number is. For example, one can have Quantify(regular) =
1, Quantify(operator) = 2, and Quantify(special function) = 4.

Much like terms, math objects (e.g., equations or full documents) have in-
trinsic importance irrespective of the query. Several aspects feed into that im-
portance:

1. the type of the math object, such as equation, graph, table, bibliographic
item, notation item, and so on;

2. the categorical importance of the member terms and other constituent
(i.e., subset) objects;

3. the number and possibly types of cross-references made to the object by
other objects in the database (or even on the Web). The types of cross-
references are taxonomized in two ways. In the first taxonomy, a cross-
reference can be local or global:

• a local cross-reference is one where the referring object and the
referred-to object belong to one and the same division of informa-
tion, such as one chapter or one Website;

• a global cross-reference is one where the two objects belong to two
different divisions of information.

In the second taxonomy, cross-references can be definitional cross-references
or propositional cross-references:

• A reference from object A to object B is definitional if both of the
following conditions are met:

– Object B defines some mathematical term/concept c

– Object A refers explicitly to object B as the object that defines
c.

• A reference from object A to object B is propositional if both of the
following conditions are met:

– Object B states and/or proves some proposition P (where the
term “proposition” is used in the broadest sense, so it encom-
passes theorems, lemmas, corollaries, “inline” substantiated or
stipulated claims, etc.)

– Object A refers explicitly to object B as the primary location of
proposition P .
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Accordingly, the math-object weight function Weight(mo) can be defined
as follows:

Weight(mo) = Combine(Quantify(Type(mo)),TW (mo),CR(mo)),

where

• Type and Quantify are like those for terms except here the categories
are those of math objects;

• TW (mo) captures the weight of the terms that make up the math object
mo;

• CR(mo) captures and quantifies the statistics of cross-reference pointers
pointing to mo;

• Combine combines the various aspects (i.e, object type, wieght of the
constituent terms of the object, and cross-reference information) into ei-
ther a scalar or a vector value, as explained next.

Combining several factors of various degrees of importance into a single
ranking-metric can be done in two ways. The first way is to map the vector
V = (x1, x2, . . . , xn) of factors into a scalar value S, such as by adding or
multiplying the components, where every component xi is magnified by some
weight wi to reflect its relative importance. That is, the scalar value formula
can be S =

∏n
i=1 xwi

i or S =
∑n

i=1 wixi, among many possibilities of combining
weighted factors. With scalar metrics, the ranking is done by straightforward
sorting of objects according to their scalar ranking metric.

The other way of combining factors is to map the vector of factors V =
(x1, x2, . . . , xn) into another, carefully ordered vector of factors V ′ = (y1, y2,
. . . , ym), resulting in a vector ranking metric of the same as or smaller dimen-
sionality than that of the original vector V . The first component y1 corresponds
to the factor of highest weight, y2 corresponds to the factor of the second highest
weight, and so on. The ranking of objects is then done by lexigraphic sorting
of the vector metric values of the objects.

Vector ranking metrics have several advantages. First, there is no need to
concern oneself about how the weights of the various factors should be quantified
and factored into metric formula. Second, and more importantly, vector metrics
and lexicographic sorting stricly enforce the policy that a most important factor
should not be overwhelmed by a comination of less important factors. For
example, if an object A has the highest y1 value among a set of objects, it will
rank ahead of all the other object regardless of the values of the other yis. In
particular, if definitional types of objects are desired to rank at the tops of hits,
the system can have the first component of V ′ correspond to object type, and
give the largest value to definition types (compared to other object types such
as propositions, graphs, etc.).

In this paper, the vector ranking metric approach is adopted. To be precise,
the combine function used employs a hybrid of scalarization and vectorization
as seen next.
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The TW (mo) function can have scalar or vector values. Specifically, assume
that the types of terms are {T1, T2, . . . , Tk}, as for example {regular, operator,
special-function}. Then,

TW(mo) =
k∑

i=1

Quantify(Ti)×Ni(mo)

or
TW(mo) = (N1(mo), N2(mo), . . . , Nk(mo))

where
Ni(mo)=number of terms of type Ti in the object mo.

The CR(mo) function maps the cross-reference information into a vector
that reflect the number of cross-references of the four possible types identified
earlier, namely, local-definitional, global-definitional, local-propositional, and
global-propositional. Therefore,

CR(mo) = (GD(mo), GP (mo), LD(mo), LP (mo))

where
– GD(mo) = number of global, definitional cross-references to object mo
– GP (mo) = number of global, propositional cross-references to object mo
– LD(mo) = number of local, definitional cross-references to object mo
– LP (mo) = number of local, propositional cross-references to object mo.

Dynamic weight information

Dynamic weight information relates to the weight of math object mo relative
to the terms t of a query q. That information is incorporated into the function
Weight(t,mo) or generally Weight(q,mo).

One possible definition of Weight(q,mo) is the same as TW (mo) except
that the terms will be limited to those that are in the intersection of the object
and the query. An elaboration on this definition would be to factor in the
number ND(q, mo) of the query keywords that are defined in the object mo.
Therefore, assuming that the types of terms are {T1, T2, . . . , Tk},

Weight(q, mo) = (ND(q, mo), N1(q, mo), N2(q,mo), . . . , Nk(q, mo))

where
Ni(q, mo) = |{t | Type(t) = Ti and t ∈ mo and t is a keyword of the query q}|.

Overall Relevance Vector Metric

Based on the preceding analysis and discussions, the overall relevance met-
ric is a vector made up of the components of Weight(q,mo) vector and the
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Weight(mo) vector, ordered according to what the system designer’s assigned
relative importance of each component.

It is the author’s judgement, and for the sake of performance evaluation
presented later, that a good relevance metric be a vector where the relevance
components, ordered from the highest importance to the lowest importance, are:

• ND(q, mo), which is the number of query keywords defined in the object
mo,

• Ni(q,mo) for the top one or two most important term types, where Ni(q, mo)
is the number of terms of type Ti that occur in both the query and the
object,

• CR(mo) = (GD(mo), GP (mo), LD(mo), LP (mo)), which captures the
global/local definitional/propositional cross-reference statistics,

• the remaining Ni(q,mo)s

• TW(mo), which is the term-weight of the object mo, expressed either as
a vector or a weighted sum,

• (optional) Quantify(Type(mo)), reflecting preferences for certain docu-
ment/object types over others,

• tf-idf(q,mo), as a final tie-breaker.

3.1 Speed Performance Evaluation of Hit Ranking

The relevance ranking scheme discussed in this paper has been implemented
and tested on the DLMF testbed. Several queries with a range of numbers of
hits were tested to measure the overhead of relevance ranking. A sample of the
results is presented in Table 1. The table shows the queries, the number of hits
per query, the search time for idenitfying the hits but without ranking, and the
time to perform the relevance computation and relevance ranking of the hits.
As can be seen, the relevance computation and ranking time is usually higher
than the search time, and, naturally, it is higher for larger numbers of hits.
Nevertheless, for a standalone database of the size range of DLMF (i.e., abput
1000 pages of contents containing over ten thousands equations), the number
of hits will usually be in the tens, hundreds, or at most in the thousands, the
relevance ranking overhead ranges from a tenth of second to at most a second,
which is quite acceptable.

For Web search relevance ranking, where the number of hits could conceiv-
able be in the hundreds of thousands or even millions, the relevance ranking
time will be significantly higher. However, the overhead can be managed down
to practical ranges. One possibility is to do a two-stage ranking. In the first
stage, a coarse relevance metric is applied, which takes into account a carefully
selected small subset of the relevance criteria when computing relevance, and
instead of sorting all the hits, find the top 100 (or so) hits. In the second stage,
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Table 1: Speed Performance of Search and Hit Ranking. (All time measurements
are in milliseconds)

Query Number of Hits Search Time Hit-ranking Time
Ai2 7 16 15∫

sin 19 15 16
eulerBeta 28 15 32
sin2 80 15 78
jacobisn OR Si 94 31 63
eulerGamma 653 31 344
cos 666 16 297
sin 707 15 329
z 2499 16 828

a full-fledged relevance evaluation and sorting of those 100 hits is done and the
hits are presented to the user in hit-pages, about 10 hits per page. Since the
truly relevant hits are very likely to be in the top 100, and most users rarely
search down beyond that level, this approach will often be sufficient. In the
rare cases where a user wishes to see the hits below rank 100, the 2nd stage is
repeated on the next 100 hits, and so on.

It is left to future work to address the important question of determining
which subset of relevance criteria makes a good coarse-grained relevance metric
to be used in the first stage of the 2-stage Web search relevance ranking process.

3.2 Outcome Performance Evaluation of Hit Ranking

Outcome performance evaluation of relevance ranking is extremely subjective. A
thorough evaluation of this sort will be left to future work, where a statistically
significant number of users and a benchmark of queries are identified and used,
and a metric of user satisfaction is decided upon and utlized in the collection of
user assessments of the search system, including the relevance ranking and the
hit-description generation which is discussed in the next section.

For now, suffice it to say that based on the expectations that definitions will
be sought after more often and by more users, and based on the valuation scheme
where the definitions/equations/plots that are cross-referenced more often are of
more weight, the outcome is far superior to the default tf-idf relevance ranking
approach. Hundreds of queries were tested. In each and every case, definitions
and notations of the query keywords ranked on top, and items of higher cross-
reference values ranked higher. Under the tf-idf relevance model, such hits
were“burried” in the second, third, or fourth page of hits.

We predict that future evaluation of user satisfaction will confirm the hy-
pothesis that the new relevance metrics are far superior to the tf-idf metric. Of
course, further refinements will be suggested by the future subjective evaluation.
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4 Hit-Description Generation in Math Search

As mentioned earlier, the rather simple way of putting together the hit-title
and a few leading sentences of the hit-target fails to convey to the user why a
doument matched and whether the matching parts are indeed relevant. It will
be much better to the user if those parts are extracted and provided with the
hit so the user can quickly dtetermine whether or not a hit is worth pursuing.
Furthermore, of those parts are determined carefully, they may often be all
that the user needs from a document, thus saving him/her from extra efforts.
This section will provide new methods for determining query-relevant excerpts
from math documents. Before starting, it must be noted that if the hit targets
are small math objects (e.g., equations or graphs), then such objects should be
displayed directly with the hits as they make the best representation of hits.
Therefore, for the rest of this section, it will be assumed that the hit targets are
relatively sizable objects that cannot be conveniently displayed along with hits,
such as sections, chapters, articles, and so on.

The approach to hit-description generation consists of several tasks. Some
tasks must be carried out at indexing time, while other tasks must be at search
time. One major goal is to minimize the computations that must be done at
search time so that query turn-around time is short enough for users.

Index-time Tasks for Hit Generation

1. Fragment each document in the database into very small units of infor-
mation, where a unit can be (1) an equation, (2) a sentence, which may
contain inline math expressions, (3) a graph, (4) a fragment of a table (in
the case where tables are large), (5) a title of a chapter/section/subsection,
(6) a notational item, and so on. This fragmentation will take place when
the documents are indexed.

2. Each fragment is then turned into a mini-document with its own ID. The
mini-document contains, besides its contents, several fields of information
that will facilitate and speed up the hit-description generation at search
time. One field is the ID of the document of which the mini-document is
a fragment. Other fields contain static information that will be used to
measure the relevance vector of the mini-document at search time.

3. Index the fragments (i.e., mini-documents) of all the documents, and store
the index information in a separate index structure, termed the fragment
index. That index is different from the index for the documents. Note
that fragment contents and the fields in the fragment are stored verbatim
in the fragment index. The reason for this will be explained below.

Search-time Tasks for Hit Generation

At search time, when the IDs of the hits that match a query have been
determined, the hits are presented one page at a time (typically 10 hits per
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page). For each page of hits, the descriptions of those hits are generated. The
following outlines the tasks to be performed:

1. For each hit in a hit-page, identify the ID of the target document, and
formulate a derivative query made up of the conjunction of the original
query and the ID of the target document.

2. Submit the query for search against the fragment index. This results in
several “sub-hits”, each of which is a fragment of the hit target document.

3. If no sub-hits are returned, relax the derivative query so that the keywords
in the original query are combined into a disjunctive query (i.e., an OR-
query of the keywords), and repeat step 2, resulting this time with one or
more sub-hits.

4. The sub-hits are then relevance-ranked using the relevance vectors de-
scribed in the previous section. Note that the relevance vector values of
the fragments can be computed fast because much of the weight informa-
tion (i.e., the static weight information) is stored in the fragment index,
and thus need not be computed from scratch.

5. A few top-scoring sub-hits (i.e., fragments) are selected, retrieved from
the fragment index, and combined (in document-order) into a descrip-
tion/summary that is presented along with the hit title in the hits page.

Several remarks are in order. First, this hit-description method requires no
file IO since all the fragment contents are stored in the fragment index, which
is a file that remains open as long as the search system is running. This greatly
speeds up the hit-description generation process. Second, the identification of
the relevant excerpts (i.e, fragments) is rather fast and straightforward: it is
a search-within-search process. Third, the relevance ranking of the matching
fragments is also fast since the static weight statistics are computed and stored
at indexing time, thus reducing the conputation time for obtaining the relevance
vectors of the fragments. Last, hit-description generation requires considerably
more disk space to store the fragment index, which is much larger that the
document index because the actual fragments are stored in the fragment index.
However, since disk space is very inexpensive, the cost overhead is not a serious
disvantage.

4.1 Speed Performance Evaluation of Hit-Description Gen-
eration

The same performance evaluation was done for hit-description generation as for
relevance ranking. A sample of the results is shown in Table 2. The table shows
the queries, the time it takes to derive the description of a single hit, and the
time to derive the descriptions of 10 hits that make up a hit-page. As can be
seen, the time for generating the descriptions for the hits in one page ranges
from a few to less than 300 milliseconds.
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Table 2: Speed Performance of Hit-Description Generation. (All time measure-
ments are in milliseconds, and a page has 10 hits)

Query Hit-packaging Hit-packaging
Time per Hit Time per Page

Ai2 26 260∫
sin 10.11 101.1

eulerBeta 7 70
sin2 19.42 194.2
jacobisn OR Si 4.97 49.7
eulerGamma 6.33 63.3
cos 4.28 42.8
sin 4.16 41.6
z 5.32 53.2

It is important to note that based on the two Tables 1 and 2, the total wait
time for a query to be processed and searched, plus the time to relevance-rank
all the hits, plus the time to generate the hit-descriptions per 10-hit page, is
about one second or less, making quite feasible the whole approach of math
searching, relevance ranking, and hit packaging.

4.2 Outcome Performance Evaluation of Hit-Description
Generation

The outcome performance is subjective to some extent. Nevertheless, exten-
sive testing was done on the DLMF testbed on over 100 queries, and the hit-
descriptions were examined closely. For each hit, the 5 top-ranking fragments
that were identified and presented as the description were found to be truly the
most query-relevant and representative of the hit-document. For example, for
the query ”sin”, the top-ranking hit was the one where sin z is defined, and the
description of that hit is:

1. Definitions and Periodicity (in Elementary Functions Chapter)
sin z = eiz−e−iz

2i , ... e±iz = cos z ± i sin z, ... tan z = sin z
cos z , ...

csc z = 1
sin z , ... cot z = cos z

sin z = 1
tan z

The hit-document contains other contents involving sin, such as sin(z + 2kπ) =
sin z, but because the number of fragments per hit-description was limited to 5,
some fragments had to be left out. If the description size is set to larger numbers
of fragments, more will be included per description. The ideal hit-description
size in math search is an aspect that requires further research.

Of course, a thorough subjective evaluation involving a large number of users
and a carefully selected benchmarks of queries will have to be conducted in the
future.
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5 Conclusions

In this paper, new relevance ranking metrics and hit-description generation tech-
niques were presented and analyzed, and their performance was evaluated. It
was found that the new relevance metrics are far superior to the conventional
tf-idf metric, and the new hit-descriptions are more query-relevant and repre-
sentative of the hit targets than convential methods of providing the title and
some leading sentences of the target document. Furthermore, it was determined
that the system response time was about one second or less, which attests to
the feasibility of the new approaches working collectively as a system.

Future research will focus on subjective evaluation of the new techniques,
with a cross-section of users, using standard testbeds and query benchmarks
that the research community will hopefully generate and agree upon. Refine-
ments and extensions of the techniques will undoubtedly have to be carried out
as a result of the subjective evaluation and the users’ feedback. Also, incor-
porating highlighting into the hit-descriptions, and turning each fragment in a
hit-description into a hot link that would lead the user to the right location in
the hit target, are subjects for further research and implementation.
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