-

A Parallel Algorithm for Random Walk Construction with

Application to the Monte Carlo Solution of Partial Differential Equations

Abdou Youssef
Department of Electrical Engineering and Computer Science

The George Washington University

Washington, DC 20052

Abstract

Random walks are widely applicable in statistical and scientific computations. In particular,
they are used in the Monte Carlo Method to solve elliptic and parabolic partial differential edua-
tions (PDE's). This method holds several advantages over other methods for (PDE's) as it solves ‘
problems with irregular boundaries and/or discontinuities, gives solutions at individual points, and
exhibits great parallelism. However, the generation of each random walk in the Monte Carlo method
has been done sequentially because each point in the walk is derived from the preceding point by
moving one grid step along a randomly selected direction. In this paper, we present a parallel
algorithm for the random walk generation in regular as well as irregular regions. The algorithm
is based on parallel prefix computations. and takes O(ﬁlog n) time, where L is the length of the
random walk. and n is the number of processors. The communication structure of the algorithm is

shown to ideally fit on a hypercube of n nodes.

§1. Introduction

The Monte Carlo Method has been studied and used to solve elliptic. and parabolic partial
differential equations (PDE) 5], [6], [11]. It holds several advantages over other methods, such 3
solving problems with irregular boundaries and /or discontinuities: giving solutions at single point
independently from the solutions at other points: and allowing for great parallelism.

The great amount of parallelism is drawn from the fact that the solution at different points ar€
independent, paving the way to indenpendent processes that can be executed in parallel. Moreove"
the solution at each point consists of evaluating a “primary estimator” (to be defined later) along 2

large number of random walks, then averaging these values. The random walks are independent and

554




therefore constructable in parallel, and the estimations along the random walks can be computed in
parallel as well. Such parallel algorithms have been studied (1], and various computer architectures
for their execution haveE%er;posed (2], {3}, [12].

A much less obvious amount of parallelism can be introduced into the evaluation of the pri-
mary estimator along a random walk. It is less obvious because the random walk is constructed
sequentially making the computation proportional to the length of the rmdoﬁ walk.

In this paper we develop and study a parallel algorithm for the construction of random walks
and along with it the evaluation of the primary estimator, reducing the time of this part of the
solution from O(L) to O(log L), where L is the length of the random walk. It should be noted that
this parallel random walk generation algorithm has other applications in statistical and scientific
computations where random walks and monte carlo methods are used.

This paper is organized as follows. The next section presents briefly the Monte Cario Method
for PDE’s and points out all the possible areas of parallelism. Section 3 introduces the intra-
walk parallelism and gives a parallel algorithm for the random walk computation. Conclusions are

presented in section 4.

§2. The Monte Carlo Method and its Inherent Parallelism
Let

AUsr +2BU,, +CUy, + DU, + EU, + F = 0 (1)

be a PDE and A a region with boundary v. The factors A, B, C, D, E and F and the unknown
function U are functions of z, y and possibly the time variable ¢.
The Monte Carlo Method is used to solve the following two problems:

A. The Elliptic PDE Problem:

U. A, B, C, D, E and F are time-independent and B? - AC < 0 on A. The problem is solve

equation (1) subject to the boundary condition:

U(z,y) = dz.y) if(z,y) €~ (2)

B. The parabolic PDE problem:

555



- = T

U, A, B, C, D, E and F are time-dependent and B? -~ AC =0 on §. The problem is solve

equation (1) subject to:
Boundary Condition : U(z,y,t) = ¢(z,y,t) if (z.y) €Y I ‘

Initial Condition: U(z,y,0)=g(z,y) if (z.y) € A 4

The region A is divided in:é a regular grid of size h. Each point P; of the grid (éxcept the boundary
points) has 5 neighbors P, P;, ..., Ps as depicted in Figure 1. We denote by §, the direction
along which we move from P, to P,, where i = 1,2,3,4,5. A random number generator (RNG)
generates random directions (i.e., §;, 62, ..., 6s). A random walk starting at Py is constructed by
moving away from P, following directions generated by RNG till an absorbing point is hit. A point
is said to be absorbing if it is a boundary point in the elliptic case, while in the parapolic case. 1t

is absorbing if it is either a boundary point or a point reached at a certain specified time.

]
P3 i
]
{
P P P, ’
P, Ps

Figure 1

Let r(Py) =2(A =B+ C)+h(E+ D), where 4, B, C, D, E and F are evaluated at (z.y)
the coordinates of the point Pp. Let also W, be a random walk starting at Py and ending at 2

boundary point Q,, and

Zw)=o(Q)+h 3 i (5
Pew, |

The Monte Carlo solution of the elliptic equation (1) at point Py, subject to condition (2).

consists of generating a number of random walks Wy, Wy, ..., W, all starting at Py and ecdi®f

556



T )

at @y, @2, ..., Qn, respectively. Afterwards, Z(W,) is evaluated for all ; = 1.2,...,.V.

Finally. U(P,) is approximated by

! N
o=F§Z(W.> - (6).

Z(W,) is called the primary estimator of U(PRy)

»and @ the secondary estimator. For the proof
that this method yields a good approximation of U, see 'num.

For the parabolic case, where U and the coefficients of (1) are time dependent, the time scale is

discretizedinto equal units of length & (ie., t, = sk, s 2 0), and U(Ry), &(Py).

A, B,C, D E.F
andfl( P) at time t, are denoted Ui(Po), 04(Ps), A,, B, C,, D

s E,, F, and rs(Py), respectively.
A random walk W in this case is constructed as before except that W is started at Py attimet

e o M,  — e B

= k.
and after each step (following a new direction), the time is decreased by one unit. The walk W is
finished

if either a boundary point is reached or the time runs out (after s steps)

. Whichever comes
first.

- SEV -Ceru

In this case, the primary estimator Z(W,) of U,(PRy) is:

s=-a F.- (P )
, Z(W,) = V,(Q,) + h? —_—
¢ (W) =Va(Qu+ a3 =ipt (

-
~—

=0
where Q, is the last point of W reached at time t, = ak, and

®(Q.) ifQ. €vyanda>0
Va(Qu) =

9(Qi)

if a =0 (ie., Q, is reached at time 0, and may be a non-boundary point)

The Monte Carlo solution of the parabolic equation (1) at point P,, at time t,, subject to

the conditions (3) and (4), consists of generating Wy, W, ..., Wy, evaluating the Z(W,)'s and
averaging them as in the elliptic case.

It can be clearly seen that the random walks W, W,,

.. v W are independent, and that
(W), Z(wy), ..

-+ Z(Wy) can be computed independently (i.e., in parallel). This inter-walk

Parallelism has been studied in [2], [3], (11]. It is also clear to see that U can be computed at

different points independently and thus concurrently.

‘ The third area for parallelism is the construction of each random W and the computation of
i Z(W) along with it. We refer to this process as the random walk computation (RWC). At first

Blance, the construction of a random walk seems inherently sequential since a current point has to

557




{ be known before the succeding point is found using a random direction generator. However, this !

paper will parallelize the construction of a random walk. 5

§3. Parallel Construction of Random Walks

To parallelize the random walk construction we first need a number of independent random
number (i.e.. direction) generators that generate a sequence of random numbers sir:iultaneously
Assume we have n ~ | independent random number geneutoﬁ running on n — 1 processors (the
choice of n — 1 as opposed to n will be justified later). The problem can be stated as follows:
Given a grid, a point Py in the grid, and a sequence of n — 1 random directions d,, d;, ... , da_,
generated by the n — | random number generators, construct in parallel the random walk that
starts at Py and moves away following the directions dy, d3, ... , da_1, consecutively. That is, the |
walk is a sequence of points Py, Py, P2, ..., Pa_; such that P; is the d,-th neighbor of P,_; for
1=1,2,...,n-1.

For simplicity, assume first that the grid is an m x k rectangular grid labeled in such a way
that the grid point (i,7) is in the i-th row and j-th column, where (0,0) is in the bottom leftmost
point. The case where the grid is not rectangular will be handled later.

A move along a direction d can be viewed as a trnaslation T4 for some vector A = (a.b) such
that Ta(i,j) = (4,7)+ A = (i+a,j +b). The translations corresponding to the five directions are:
Ti0.1) for the move to the east direction, T(o 1) for the move to the west direction, T“,o) for the
move to the north direction, T(-\.o) for the move to the south direction, and T(_, ;) for the move
to the southeast direction. ’ »

Given an initial grid point Py and n -1 random directions dy, dz, ... , dn-1 , the corresponding
translations Ta,, Ta,, -, Ta,_, can be simply found and the points P, Pz, ..., Pn_ are derived
as follows: Py = Ta,(Po) = Po + Ay, P2 = Ta,(P1) = Ta;Ta,(Po) = Po + A1 + Az, and in general.

P, = Ta(Pisy) = Ta, . Ta,Ta,(Py) = Po+ A1+ Az + ...+ A, for i = 1,2,..,n = L. Finding
these points is now a standard parallel prefiz computation [7] [8] [9] which can be solved in O(log 7
time. However, further work has to be done to check boundary crossing. A point P, = (p.q)isd
boundary point simply if p=0,p= m~1,¢ = 0or ¢ = k-1, but what is required is to determine.
in a parallel setting, the first boundary point and to discard all the remaining points after it. If

there is no boundary crossing and P, is not a boundary point, the algorithm is repeated. The

558



details of this algorithms are elaborated next.

The algorithm makes a heavy use of the procedure SCAN which does the prefix computation
on n processors in parallel taking O(log n) computation time, and, if run on a hypercube of n
processors, it takes O(logn) communication time. A similar procedure is implemented on the
Connection Machine. Subsection 3.1 will present the procedure SCAN. Subsection 3.2 will describe
the parallel (RWC) for the elliptic PDE's on rectangular g;ridl. The case of non-rectangular grids is
shown to be a slight variation of the rectangular case and is handled in Subsection 3.3. Afterwards,

the necessary modifications to handle parabolic PDE'’s are discussed in Subsection 3.4.

3.1 The SCAN Algorithm

The procedure SCAN performs the parallel prefix computation for any associative operator.
Specifically, the prefix problem is to compute the values of Xo, Xo o X1, Xoo0 X, 0 X3,
Xoo X o0...0X,_y, given the values Xq, X, ..., Xn-1. The operator o is any arbitrary associative
binary operation such as scalar addition (+), vector addition (+), the minimum operator (MIN)

and so on. The integer n can be assumed to be a power of 2. The parallel prefix problem is to

compute the values above in parallel.

The parallel prefix problem has received much attention [7], (8], [9], and various VLSI circuit
implementations have been proposed [9], [Ic]_, (14] R . We will present in this paper an
optimal parallel algorithm for prefix computation. The algorithm communication structure will be
shown to ideally fit on a hypercube network of n nodes.

Thé algorithm for SCAN is best explained first in a recursive way. Denote by X, the value
of X, 0 X410 ... oX,. Initially processor pe; has X,. At the end of the algorithm pe; will have
the value Xo.; and Xo.n_1. To understand the basis step of the recursive algorithm, assume there
are 2 processors only, that is, n = 2. Then the algorithm proceeds as foliows. pey sends X to pe;
and pe; sends X) to pey. Afterwards, every pe computes Xo.; := Xgo0 X,. Thus, peg has now X
(which is Xy), pe; has Xo.;, and both pe's have X ;.

To understand the recursive step, assume SCAN has been performed by the first half-interval
of processors peg, pey, ..., pey -1 on the data Xo, X, ..., X,-l, and also by the second half-
interval of processors Pey Pey+1, ..., pea_ on the data X,, X,“, we y Xn=y. Assume also
that the effect of this two SCAN's is that for every 1 = 0,1,...,% = 1, pe; has the value X, and

559



the value Xo.4.,, and that for every i = 3,3 +1,...,n — 1, pe, has the value X,;.» and the value
X3.n-1. After the recursive step, every processor pe;, for i = 0,1,...,n = 1, will have the values
Xo.. and Xo.n—1. This step is accomplished as follows. Every processor pe, in the first half-interval
sends the value Xo. 4.1 to peisy in the second half-interval. Similarly, every processor pei+y in the
second half-interval sends the value Xy...; to pe; in the first half-interval. Afterwards, every pe,
in the second half-interval computes XQ:.- = Xo;§-; 0 X,:;. Final.ly, every pe; in both half-intervals
computes Xo.ny = Xo;y-; o X,z,._l. By this recursive step, every pe; has Xo., and Xo.n_;.

This algorithm can be implemented nonrecursively in log n stages as follows. In the first scage,
every pair of processors pe;; and pej;.; do the same on their respective data as is done in the
basis step of the recursive algorithm explained above. At stage i, the n processors are divided’
into f independent intervals (;)oc;ca -1, Where [; = G2, + 12 =1] = {52, j2 +1, j2' +
2, ..., (j+ 1)2" = 1}. Each interval I, is in turn divided into two half-intervals of processors
[j2'.j2*+ 2=V = 1] and [j2' +2'~',(j + 1)2' - 1] such that every pe, in the first half-interval has the
values X;..; and Xj3..,3.42:-1_1, and every pe, in the second half-interval has the values X ;3. ,;.-1,
and X 2. 492:-1.(,41)2-=1- 1D stage i, the processors in these two half-intervals perform the same job
on their data as the two ha.lf-inter\}als in the recursive step in the last paragraph. The details of
this job are presented in the first inner for-loop in the procedure Stage(i) below. This procedure
impelements the i-th stage just explained.

To fully understand the working of Stage(:). the semantics of three special paralle] language

constructs in Stage(i) need to be specified. The first is of the form:
for j = m to k pardo
proc,;
endfor
which means that the processes proc,, procm+1, ... , procy run simultaneously.

The second is of the form: pe; does: S; which means that processors pe; executes the statement
S. The third is of the form Send (pe,.a,pe,): which means that processor pe; sends the data value

a to processor pe,.
Procedure Stage(:);

begin

560




> | -

for j = 0to &+ - 1 pardo /sj denotes the interval Ij = [J2,(j + 1)2' = 1] of pe'ss/
for | = j2' to j2' + 2'~! — 1 pardo /sl ranges over the first half of Ie/
Send (pe;, Xj3. 52 420=121, Pelygem1 );
Send (peiy2i-1, Xj2e420-1,j41)20 -1, PEL);
Peisy-1 does: Xy pgimt 1= Xjguige420m121 0 Xjpiazemtingems
endfor \
for | = j2' to (j +1)2' - 1 pardo
pe: does: Xjz.(je1)z o1 = Xjgujze ga0-121 0 Xjgepaimi(yanyze o1
endfor
endfor

end

The Algorithm for the i-th Stage of SCAN

The full algorithm for SCAN is a simple sequential for-loop executing stage 1, stage 2, ... .
stage logn, as presented below.
( Algorithm SCAN(X(0..n - 1));
begin
for: =1tologn do
Stage(i);
endfor

! end

The Algorithm for SCAN

Communication and Complexity analysis of SCAN

By a simple inspection of the procedure Stage, we observe that communication occurs between
Processor pe; and pe;, ;.- for various values of [ and i such that i = 1,2,...,logn and ;2 _<_££
J2+2'=1 — 1. When  is expressed as a binary number l,_,..l) o, it can be seen that /;_; is equal
t0 0 and that / +2'~! has the same binary representation as [ except that bit /,_, is complemented.
That is, f and { +2°-! differ in only one bit. Consequently, if SCAN is run on a hypercube system of

" processors, every two processors that need to communicate will have a direct link between them.

In other terms, the hypercube structure is an ideal structure for SCAN. As for the time complexity,

561




L,

the body of the two inner for-locps in Stage takes constant time. Since all the for-loops in Stage
are parallel loops, Stage(i) takes constant time. It follows that SCAN takes O(log n) time. Finally,
as explained earlier. every processor needs to store two values only at any stage. Thus the space
complexity is optimal.

Note that when the operator o is scalar addition, we refer to SCAN as ADD-SCAN. when o is
vector addition, SCAN is referred to as VADD-SCAN, and when o is the minimum operator MIN.
we refer to SCAN as MIN-.SCAN.

3.2 Parallel RWC for the Elliptic PDE’s

Given an initial grid point P, and n - 1 directions corresponding to the translations T,,.
Tayo .y Ta,_,. the points Py, Py, ..., P,_; of the random walk are found by calling VADD-
SCAN(A(0..n ~ 1)), where A(0) = Py and A(i) = 4, fori = 1,2,..,n - 1. Since P, = Py + A+
Az +...+ A,, we conclude that P, = Ao., and is hence computed by pe;. At this point, the boundary
checking test has to be performed.

Assume that the coordinates of P, are (a,,b,), or equivalently, that A,, = (ay,b,). Each pe,
watl check .f the point P; is a boundary point and compute a certain flag f, as follows:

Check-Boundary(P,) /+ done by pe;+/

begin
if(a,=0ora,=m-1)or (b, =0or b, =k - 1) then
/+ P; is on boundarys/
fii=1
else
f. = 2n; /+ or any number > ns/
~nd

To determine the first boundary point so that all succeeding points are discarded, we determine
the minimum of all the flags fo, fi, ... , fa-1- This can be accomplished by executing MIN-
SCAN(f(0..n = 1)). The minimum min is fo.n_; which is available at every pe, at the end of
MIN-SCAN. If all the points are within boundary, then each f; = 2n and hence the minimum is
2n. If there is a boundary point, assume that P, is the first boundary point. Therefore, f, = [, and

fori <!, fi=2n> f;. Fori > |, f, is either i or 2n based on whether P, is a boundary point of

562




{ not: in either case f; = < f,. Thus, /; is the minimum of all the £,'s, and is equal to /. It follows
that min is equal to 2n if all points are within boundary, and if there is a boundary point. min is
equal to the index of the first boundary poiﬁt (which is < 2n), that is, P,,,, is the first bound;r_v
point.

After the boundary checking and the computatién of the minimum min of the flags f,'s, each
pe, checks if min = 2n (recall that every pe; has the rﬁin after MIN.SCAN). pr?, finds min = 2n
or j £ mun, then pe, computes the value z; = %‘;ﬁh’ because the point P; is on the walk.
Otherwise, the point P, is after the first boundary point, in which case pe; sets z; to 0.

Now if min # 2n, then P,,, is the first boudary point (i.e., the endpoint Q of the random
walk W just generated). In this case, pem,n sets Zmin 1O Tmyn = Tmin + & Pmin). Afterwards. the
processofs Peo. pe1, ..., pen_) sum their z,'s to form Z(W). This is accomplished by executing
ADD-SCAN(z(0..n ~ 1)).

On the other hand, if min = 2n, then no boundary point has been reached yet. The sum
o0+ Z1 + ...+ Zny is computed using ADD-SCAN(z(0..n - 1)), and the- stored in a temporary

variable Z in pey. Afterwards, pey sets the points Py to P,_; (i.e., Py := P,_}), whi'e all the other

o

pe’s clear all their variable, and the whole process of generating n — 1 random directions and finding
new points is repeated. The “Z-value” of every new set of points is computed and added to the
old Z variable in peg. The process is repeated till a boundary point is reached.

The execution time of the overall algorithm for parallel RWC is O({‘ logn) on a hypercube
architecture of n processors, where L is the length of the random walk. This is so because each
iteration of the algorithm corresponding to a portion of n — 1 points of the path take O(log n) time.

This brings an end to the parallel RWC algorithm for rectangular grids and elliptic PDE's. In
-1e next two subsections, non-rectangular regions are handled and then the modifications needed

to handle the parabolic PDE’s are presented.

3.3 Handling Non-Rectangular Regions
For the case of non-rectangular regions, the region is embedded in the smallest rectangular mx k
grid where the boundary lines of the grid are tangent to the region. The two points of intersection

between the region boundary and row p of the grid are recorded for each p. The western intersection

point takes the label of the grid point immediately to its west (denoted (p, W(p))), and the eastern

563




intersection point takes the label of the grid point im mediately to its east (denoted (p. E(p))).
L Similarly, The two points of intersection between the rezion boundary and column q of the grid are
recorded for each ¢. The northern intersection point tikes the label of the grid point immediately
to its north (denoted (N(q),q)), and the southern irtersection point takes the label of the grid
point immediately to its south denoted (S(q),q). The random walk generation is the same as in {
the rectangula.r case except for boundary checking. 4 point P = (p,q) is a boundary point ifﬁ =0 o
or S(g)., p=m~1or N(q),g=0o0r W(p),org=k-1or E(p). Thus the Check-Béundary
procedure becomes:
Check-Boundary(P,) /s done by pe,, P, = (8i,6:)s/ ,,
begin |
if(agi=0o0ra,=Sb)org,=m-1lora = N(5))
or (bi=0o0rb =W(a)orb =k~1orb = E(q)) then
/* P, is on boundarys/
fi=1
else ,‘
{ fi:=2n; [« or any number > ns/ |
end |

To be able to execute this procedure, every pe has to store Wi(p), E(p), N(q), and S(q) for
al0<p<m-land0<qg<k-1.
Thus the parallel RWC algorithm keeps its simplicty and speed, requiring only some additional

storage for the intersection points between the region boundary and the grid.

3.4 Parallel RWC for Parabolic PDE’s

The parallel RWC algorithm for the parabolic case is very similar to the algorithm for the
elliptic case. The only difference is the definition of absorbing points and the subsequent change
needed to detect boundary points and the slight modification of Z(W).

At the outset of the algorithm, ‘every pe, has a counter T (for time) initialized to s. The
algorithm finds the n -~ 1 points first in the same way as in the elliptic case. It also performs
boundary checking as before. If a boundary point has been detected, say Pmin, and if T — min > 0.

. . . ) . - Fr_,(P),;2
then Pm,n is an absorbing point, and hence every pe;, for j < min, computes z; := ’r'-ITfTP,‘Th :

564



and then pemin %€t8 2,0 1O Znin + éf.m...(P,,‘...) as required to compute Z(W) of equation (7).
All the remaining pe’s set their z's to 0. Z(W) is then computed by executing ADD-SCAN as in
the elliptic case.

If on the other hand, T — min < 0 (i.e., run out of time), then the absorbing pointis Pr. In
this case, only the pe,’'s where ; < T compute z; := f,r:" P, h?, while all the remaining pe's set
their z's to 0. The remaining part to compute Z(W) is the same as in theAprevious paragraph.

If min = 2n and no grid boundary point is reached, and if T < n - 1, then Pr is an absorbing
point and the algorithm does as in the preceding paragraph. However, ifT> n=- 1, then no absorbing
point has been reached. In this case, the same computations are done as in the elliptic case (to
accumulate Z), but before we repeat the algorithm with a new set of n — 1 random directions, the
counter T in each pe updated: T := T - (n — 1). Afterwards, the algorithm is repeated till an
absorbing point is reached.

As can be seen, the additional computations needed for the parabolic case takes constant
time. Consequently, the overall time for tha parallel RWC for the elliptic or parabolic PDE’s is

O(% log n), whether the region is a rectangular grid or not, where L is the length of the random

walk, and n is the number of processors.

§4. Conclusions

We have‘presented in this paper a paralle] algorithm for the construction of random walks in
the Monte Carlo solution of elliptic and parabolic partial differential equations. The algorithm was
shown to ideally fit on a hypercube structure. The algorithm is optimal in time and space wheﬁ
the region is a rectangular grid. It is also optimal in time when the region is irregular. In the latter
Case, a certain amount of space is needed at every processor, and it is open whether it can be done
in constant space per processor.

This parallel generation of random walks offers great speedup in the solution of partial differ-
ential equations. It reduces the time of random walk construction from linear to logarithmic time
in the length of the random walk.

Finally, the parallel generation algorithm presented here is easily generalizable to grids of any
dimensions and can have applications in other areas. Future work will investigate parallel random

“alk generation in grids of geometries different from rectangular grids.

565



§5. References
1] V. C. Bhavsar, “Some parallel algorithms for Monte Carlo Solutions of Partial Differential
Equations,” Advances in Computer Methods for partial pifferential equations, vol. 4. R. Vich- ‘
nevestky and R. S. Stepleman (Ed.), New Brunswick: IMACS, pp. 135141, 1981. E
(2] V. C.Bhavsarand V. V. Kantkar, “A multiple microprocessor system (MMPS) for the Monte !
Carlo solution of partial diﬁ'ereqtia.l equations,” Advances in Computer Methods for Partial
Differential Equations, vol. 2, R. Vichnevestky (Ed.), New -Brunswick: IMACS, pp. 205-213.
1977.
(3] V. C.Bhavsar and A. J. Padgaonkar, “Effectiveness of some parallel computer architectures
for the Monte Carlo solution of partial differential equations,” Advances in Computer Methods ‘
for Partial Differential Equations, vol. 3, R. Vichnevestky and R. S. Stepleman (Ed.), New
Brunswick: IMACS. pp. 259-264, 1979.
(+] J. H. Curtiss, “Sampling methods applied to diffrential and diffrence equations,” Proc. Sem-
inar Scientific Computations, IBM 1949. ‘
5/ J. H. Halton, “A retrospective and prospective survey of the Monte Carlo method,” S/4}f
Rev., vol. 12, Jan. 1970. l
(6} J. M. Hammersly and D. C. Handscomb, Monte Carlo Methods, London, England: Methuen. |
1964.
.7l P.M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a general class
of recurrence equations,” I[EEE Trans. Comput.v, Vol. C-22, No. 8, pp. 786-793, Aug. 1973.
(8] C.P.Kruskal, L. Rudolph and M. Snir, “The power of parallel prefix,” [EEE Trans. Comput.’
Vol. 34, pp. 965-968, 1985. |
.5} R.E. Ladner and M. J. Fischer, “Parallel prefix Computation,” Journal of ACM Vol. 27, pp.
831-838, 1980.
[10] S. Lakshmivarahan, C.-M. Yang and S. K. Dhall, “On a class of optimal parallel prefix circuits
with (size + depth) = 2n -~ 2 and [logn] < depth < (2[logn] - 3),” Proc. of the Int’l Conf. t
Par. Proc., pp. 58-63, Aug. 1987.
(11] E. Sadeh and M. A. Franklin, “Monte Carlo solutions of partial differential equations by
special purpose digital computers,” [EEE Trans. Comput., C-23, pp. 389-397, Apr. 1974.

566




wye

( (12] E. Sadeh, “A Monte Carlo computer for the solution of partial differential equations,” M.S.

thesis. Washington University, St. Louis, Mo.

{13] M. Snir, “Depth-size trade-off for parallel prefix computation,”
7. pp. 185-201, 1986.

Journal of Algorithms, Vol.

567




