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Abstract ~ This paper will propose and study two
randomized self-routing fault-tolerant algorithms, S-
ingle randomization(SR) and multiple randomization
(MR), for routing arbitrary permutations on Clos net-
works. The algorithms set the first column of Clos
randomly and self-route the messages in the remain-
ing 2 columns. When permuting with SR, every source
randomly selects an oulpul port of the first column,
and then attempts to set up its path until it succeeds.
With MR, whenever a source I/’ails to set up its path
due 1o conflicts, it randomly selects a new output port
of the first column. We will show that the permutation
delay in Clos of up to 1024 nodes is 8-6 time units un-
der SR, and 34 time units under MR. It is also shown
that the delay degradation due to multiple swilch faults

is less than one time unit when the faully swilches are
the first or last column, and if the faulty swilches
* .re in the middle column, the delay degradation is at
most 3 units under SR and af most 2 unitls under MR.
The untversality, high fault tolerance, self-routedness
and very small routing delays make randomized rout-
ing superior {o any non-randomized routing algorithm
for Clos networks. They also make Clos networks very
atiractive for parallel computer systems.

1 Introduction
Fault-tolerant interconnection networks are essen-
tial to the reliability of parallel computer systems.
Much work has been done on network fault tolerance
(2, 6,11, 15, 20, 22]. In the case of multistage intercon-
nection networks (MIN), most of the fault tolerance
efforts have focused on the Q-like banyan MIN’s be-
cause of their self-routedness and lower cost. Howev-
er, these networks have limited fault tolerance because
when a switch is stuck, certain destinations become in-
accessible from certain sources. Two approaches have
been used to enhance the fault tolerance capabilities
of these networks. The first is a hardware approach
(1, 3, 11] of adding extra switches and/or extra links.
The second is a software approach such as multiple
routing passes through the network [4, 16, 2011. These
techniques, though they improve the network fault tol-
erance, cause hardware and/or latency penalty.
Benes [5] and Clos networks [8] are more fault-
tolerant because of the availability of muitiple path-
s between sources and destinations. Several fault-
tolerant routing schemes have been proposed for Benes
stworks [3, 10, 22] that take advantage of the multi-
ple paths or add some extra hardware. However, these
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schemes do not solve the basic problem of the slow
Benes routing speed: They either route a subclass of
permutations at a fast speed or route all permutations
at a very slow speed. As for Clos networks, no specific
fault tolerance scheme is known. This lack of atten-
tion to Clos networks may stem from (1) the higher
hardware cost of Clos networks due to the required
large switches and (2) the slow routing speed on Clos

which takes O(N log® N) [12]. The hardware problem
has been greatly a.l?eviated y the advances of VLSI
which make large crossbar switches affordable. The
routing problem, though improved by certain recent
approaches [23] for routing subclasses of permutation-
s, remains a problem for routing arbitrary permuta-
tions. The problem of fast, fault-tolerant routing of
arbitrary permutations on Clos networks is the focus
of this paper.

We will propose and study fault-tolerant random-
ized self-routing algorithms for Clos networks. Ran-
domized routing has been applied by Valiant on hyper-
cubes [19] and %)y Mitra and Cieslak on the so-called
extended Omega [13], but the fault tolerance poten-
tial of randomized routing was not addressed by those
authors. We will give two randomized algorithms,
the Single Randomization Algorithm and the Multi-
ple Randomization Algorithm. The first algorithm is
similar to Mitra and Cieslak’s algorithm, but the sec-
ond is an enhancement that will be shown to reduce
the routing delay significantly. We will then show how
these two algorithms easily adapt to multiple switch
faults. Finally, we will conduct performance analysis
of the routing delay of permutations under these two
algorithms and in the presence of switch faults of a
stuck-at type. The analysis will be carried out both
theoretically and through extensive simulations.

Our performance analysis will show that the algo-
rithms route any permutation in 3-7 network cycles
with overwhelming probability, and that most faulty
switches add to the delay at most one cycle on aver-
age. (A network cycle is the time needed to estab-
lish non-conflicting source-destination paths and de-
liver the corresponding messages.) The analysis will
also show that multiple randomization yields better
performance than single randomization.

The paper is organized as follows. Next section
will give an overview of Clos networks. Section 3 will
specify the fault model assumed in this paper. Section
4 will present the two randomized routing algorithms
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Figure 1: A Clos Network

and show how they can tolerate switch faults. Sec-
tion 5 will give a probabilistic analysis of the com-
munication dge:lay of permutations in faulty Clos using
randomized routing. Section 6 will present the simu-
lation results of the communication delay. Concluding

remarks will be presented in Section 7.

2 Overview of Clos Networks

Clos networks will be overviewed and related rout-
ing concepts discussed.

Let p and ¢ be two positive integers and N =
throughout. A Clos network C(p, q) (see Figure 1) has
N input terminals representing processors, N output
terminals representing either memory modules or pro-
cessors, and three columns of switches Sleft, middle
and right). Each of the left and right columns has p
crossbar switches of size ¢ x . The middle column has
q crossbar switches of size p x p. The switches in the
left and right columns are labeled 0, 1, ..., p—-1,
and the switches in the middle column are labeled
0, 1, ..., g~ 1. The input ports and the output ports
of every n x n switch have local labels 0, 1, ... , n—1
(n = por q). The input (or output) y of a switch z
in any column has a global label [zy). Every switch
z in the left, middle or right column will be denot-
ed [Z)iese, [2)middie OF [Z]right, respectively. Similar-
ly, every input/ouput port [zy] of the left, middle or
right column will be denoted [zy)iess ,[2Y)middre, of
[zy)right. The interconnection between the first two
columns links every output port [zy}es: to input port
[yzjm.-ddge. Similarly, the interconnection between the
middle column and the right column links output port
(yZ]midate to input port [zy]rigns.

It is known that if the first column of C(p,q) is
dropped, the remaining network can be self-routed us-
ing the destination addresses. To see this, suppose
that a message is to be sent from output port [ZY)iest
of C(p, q) to the output terminal [z'y/]. The message
first enters the input port (yZ)middie, then, using the
digit z’ of the destination address [z'y/], the message
exits through output port [yz']midgre. Afterwards, it
enters the input port [2'y],i,a: and then, using the dig-
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it y of the destination address [zy/], it reaches out-
put port [z'y]righe, which is the desired destination.
In summary, to go to destination [z'y’], =’ is used to
control the middle column, and y is used to control
the right column.

Consequently, to go from any input terminal [vw)
of C(p, q) to any output terminal [z'y’], we can select
a digit 2/, 0 < 2’ < ¢ — 1, and form the control tag
Z'z'y to find a path grom [vw] to [z'y/] in C(p,q) as
follows: Use z’ to control the left column, that is, to
link input port [vw] to output port [vz’] of the first
column, and from there establish the path to the out-
put terminal (z’y’] as explained above. The way 2z’ is
selected characterizes the routing algorithm. In this
paper, 2’ will be selected randomly.

Since 2’ is selected randomly, conflict over links is
bound to occur and should be resolved. We will use
unbuffered circuit switching and resolve conflicts as
follows: Whenever two or more paths conflict while
being established, only one path is fully established
v:hile all the others are abolished awaiting future cy-
cles.

3 The Fault Tolerance Model

The three standard aspects of fault tolerance are (1)
type of faults, (2) number of faults, and (3) detection
and location of faults (fault diagnosis). Efficient tech-
niques for switch fault diagnosis in MIN’s are available
[3,7,9, 14, 17, 18, 21}, although these techniques are
mainly for banyan MIN’s with 2 x 2 switches. In any
case, fault diagnosis in Clos, though of great impor-
tance, will not be considered in this paper. We will
only specify the first two aspects of our fault model
and assume that the detection of the faults and the
identification of their locations and type are provided.

Our fault model is the stuck-at model wherein a
faulty switch is stuck at a one-to-one setting. We will
denote by a, the setting (i.e., permutation) of a stuck
switch z. The justification for this fault model is the
following. An unbuffered n x n switch is (or can be)
implemented in VLSI as an n x n grid of 2 x 2 switches.
It is known that 2 x 2 switches can be stuck at one
of their two states, cross or straight through. Thus, if
certain 2 x 2 switches in an n x n crossbar switch are s-
tuck, then certain input ports of the crossbar can link
to some output ports but not to others. If we were
to keep track of the set of accessible output ports for
each input port in each faulty switch, with the intent
to make that information available to the input ter-
minals to adjust their randomizing accordingly, then
the randomization adjustment overhead would likely
outweigh the benefit, let alone the necessary memory
overhead of storing that information. On the other
hand, if we assume the switch is stuck at some one-to-
one setting realizable by the faulty switch, the neces-
sary randomization adjustment is more manageable.

The fault model assumes multiple switch faults.
However, if switch faults occur in different columns,
certain destinations become inaccessible from certain
sources, and multiple passes through the network are
then required. Algorithms to route from any source
to any destination (using perhaps multiple passes) 10
a faulty banyan MIN have been introduced ﬁ 16, 20]-

¥




.
i . . - I3 3 .
‘But since randomized routing is concerned with single-

-
§

3,

path is estab

1ese algorithms may be extended to apply to Clos.

pass routing, these multiple-pass algorithms have no
direct bearing on randomized routing and will thus be
left out of this paper. Accordingly, the fault model
allows multiple faults in a single column only, albeit
the column can be any of the three columns. In the
case of stuck switches in the middle column, it will be
assumed that at least one middle switch is not stuck
(for complete connectivity).

4 The Randomized Routing Algo-

rithms for Clos networks

We will present two fault-tolerant randomized self-
routing algorithms for Clos C(p, ¢), namely, the Single
Randomization Algorithm, and the Multiple Random-
izalion Algorithm. In these algorithms, every input
terminal processor will be assumed to have an inde-
pendent uniform random number generator that gen-
erates integers in the range from 0 to ¢ — 1, corre-
sponding to the local labels of the output ports in
every switch of the left column.

The Single Randomization Algorithm
To route a permutation f, every input terminal s
forms its control tag z'z'y’ to its destination f(s) =
[z'y] by selecting 2’ from {0,1,...,q9 — 1} uniformly
randomly and independently of other input terminals.
Then, every input terminal s attempts to establish the
correspondinf path s — f(s) until it succeeds; when a
ished, its corresponding message is sent.

he Multiple Randomization Algorithm

- The Multiple Randomization Afgorithm differs
from the Single Randomization Algorithm only in the
repeated randomization. Specifically, after an input
terminal { randomly selects z’ and forms its control
tag z'z'y/, if the path i — f(i) conflicts with other
paths, the input terminal i does not commit itself to
the same 2’ in the future cycles. Rather, every time
an input terminal 7 experiences a conflict at the begin-
ning of a cycle, it randomly selects a new z’ and tries
to establish the path i — f(i) in the next cycle. This
is repeated until the path 1s established. Note that
the repeated selection of 2’ does not incur additional
overhead because it is done during the otherwise idle
wait of input terminal 1.

The conceptual rationale behind this multiple ran-
domization method is that when a conflict occurs,
some clustering of paths has occurred, so the repeat-
ed randomization helps to uncluster some of the paths
and reduce the delay. Reclustering may take place,
but the repeated randomization again takes care of
the new clusters.

Fault Tolerance in the Randomized Algorithms
We now discuss how switch faults are tolerated in
these two algorithms. If the faulty (i.e., stuck) switch-
es are in the left column, the two routing algorithms
remain the same except that no randomization takes
place in the stuck switches. If the stuck switches are
in the right column, it is assumed that the labels (i.e,
locationsg) and settings of these switches are known to
very input terminal. When a permutation f is to
-e routed, every input terminal s checks first if its
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destination is an output of a stuck switch. If so, the
input terminal determines its unique control tag z'z'y/
where f(s) = [2’y']. Note that this control tag is u-
nique because the path s — f(s) must be unique in
this case. Note also that 2’ is easily computable be-
cause 8 knows the stuck setting of the right switches.
If, on the other hand, the destination f(s) is an out-
put of a fault-free switch, the input terminal s carries
out its original random selection unaffected.

If the stuck switches are in the middle column, a
slightly different adjustment has to be made. Let F
be the set of the labels of the stuck middle switches.
When routing a permutation f, if a source [zy] chooses
its z’ from F, then the path [zy] — flzy] goes through
the middle stuck switch [z']mi44r. and is thus forced to
go to a certain right switch. Formally, if 2/ € F (and
a, is the stuck setting of switch [2'}middre), then the
path [zy] — flzy] is:

zYliest = [22'Niege — [2'Z)midaie —

[#' @/ (2))migdte — [ (2)2']rigne — flzy)
implying that f[zy] is an output of switch [a,+(£)]righ:-
Therefore, sourceclzy] may select a #/ that belong to F
if and only if its destination is an output of the right
switch [ag ,(s)lright- Consequently, when routing f,

every input terminal may choose its 2’ uniformly ran-
domly from the set

A , = {2 ¢ F 'e F d
f( [z(y%yi]s 21 ou{t;u’t zofiwitglll‘ E;,/%z)] r?;}l:t)}.

This range of 2’ is easily determinable because the a’s
are known to each input terminal.

5 Performance Analysis

Probabilistic analysis of the communication delay
of permutations under the Single Randomization Al-
gorithm will be carried out in this section. The Mul-
tiple Randomization Algorithm seems much harder to
analyze theoretically and will thus be studied by simu-
lation only in the next section. It will prove convenient
to analyze the delay in the Single Randomization Al-
gorithm in the fault-free case first. The faulty case
will follow later.

5.1 Analysis of the Fault-Free Single Ran-
domization

Let f be an arbitrary, fixed permutation to be rout-
ed in C{(p, q) using the Single Randomization Algorith-
m. Every input terminal s of C(p, ¢) will send a single
message M, to the output terminal f(s) of C(p,q).
The maximum time delay of M, to reach its destina-
tion will be probabilistically modeled and shown to
follow a binomial distribution.

Throughout this paper, let
¢ f = the permutation to be routed.
¢ R = an arbitrary, fixed path [at]i.;: — [ta]middie —
[tblmiddte — [bt]lrign:, from output port [at] of the left
column to the input port [bt] of the right column (see
Figure 2).
e X = the (random) number of source-destination
paths that conflict with R when f is being randomly
routed. The maximum time delay experienced by any

message M that needs to use all of R is modeled by
X.
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Figure 2: A Fixed Path R (in dark lines)

¢ C = {source s | (s is an input of switch [a]jes;) or
(f(s) is output of switch [b].iyns)}. In other terms, C
is the set of the sources s such that the (random path)
8 — f(s) potentially conflicts with R. The potentiali-
tity may or may not become an actuality depending on
which choices the randomized algorithm makes. Note
that C depends on f, a and b, but not on the random-
ized algorithm.

¢ ¢ = |C]. Note that ¢ < ¢ < 2q.

Theorem 1 The random variable X follows the bi-
nomial distribution B(c, 1).

Proof: Let z, be a Bernoulli random variable for
every s in C, where z, = 1 if the path s — f(s) s
elected by the algorithm conflicts with R; otherwise,
z, = 0. Thus, X = E.ec z,. It can be seen that for

every s € C, the selected path s — f(s) conflicts with
Rif and only if it goes through the same middle switch
as R, which is [t]niqare. Therefore, for every s € C,
the selected path s — f(s) conflicts with R if and on-
ly if the source terminal s selects the output port of
local label ¢ in the left column. As every source selects
one out of ¢ choices uniformly randomly, s chooses t
with probability 1. It follows that Pr(z, = 1] = -
Thus, every z, is a Bernoulli random variable with pa-
rameter %. In addition, since the sources make their

random choices independentl{, the z,’s must be inde-
pendent. Consequently, X follows the binomial distri-
bution B(e, %) 0O

It follows from the previous theorem that the av-
erage value E(X) is £ which is between 1 and 2 be-

cause ¢ < ¢ < 29. More importantly, high probabilis-
tic bounds on the value of the delay X will next be
derived. We will first prove a useful theorem about
binomial distributions. The reader may wish to skip
the proof.

Theorem 2 Let Y be a random variable that follows
the binomial distribution B(n,p). Let A = np = E(Y).
Then, the following holds:
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(1) For every k > 2\, PrlY <k > e~ TF &
(2) For all y > X and for k > 2y, Pr[Y < k] >

e Z::O %’1

Proof: (1) Let r be an integer > 2A+1. Pr[lY =r] =
(:,')p"(l — p)*~" which can be shown to be equal to
PriY =] = 5(1- 3" [T.Z) 2=t
where [T/Z) 25 = Aox 2ol x 22C21) 1t will be
shown next that (1~ 2)” < e~* and []Z;) 2=} < 1.
Since (1 — 2)" is an increasing function in n and
converges to e, it follows that (1 — 2)" < e=*,
As for the claim [];Z) 2=t < 1, two cases will be

distinguished based on whether r is even or odd. In
each case, the r terms in the product will be regrouped
as follows. For r even,

-1 n-l 155 ) ((n=i)[n—(r=1-i

im0 2=y = [Lizs (===l
and for r odd,

-1 -1 _ "_r—l L g} —F —(r=1~i
Iise 8= = 5= 12~ (=)
The term [{2=42=C21-0l} can be shown to be an in-
creasing function of i for i < ';1 (because the numer-
ator is a parabola in 1). Therefore,
rel

n=i)n-(r—1-i ] < [(n—'i-‘)([::(;):‘——r)l] =

[52(;__3_'5')]2 which is < 1 when r > 2\ 4+ 1. Thus,

whether r is even or odd, []j0, 2=t < 1.

As a result, we have PrY =r] < 2z¢2 Hence,
Prly 2 r] = ZL PrlY = i] < e TL, & <
e~ Yise F=eMA-Ti ) =l-e T4
(Note that we made use of the well-known formula
A =1+3+4+.)

Consequently, PrlY < r—-1] =1~ Pr[Y > r] >
e=*$°2o & for r > 2X + 1. Letting k = r — 1 which
is > 2], part (1) of the theorem follows.

t:"

(2) It can be seen that *—Z" is an increasing function

of z for z < r. Therefore, Pr[Y = r] < 2re* <

{-;-e"' for A <4 < r. Thus, PrlY = 7] < -"{-!:e"‘y for
r > 27+ 1. The rest of the proof is the same as in the
preceding paragraph. D

Since X ~ B(c, %), it follows that A = f < %1 <2
Therefore, for k > 4, Pr{X < k] > e~23F_, . By

evaluating e~2 Z.)“.—.o f—.' for k = 4,5,6,7,8,9, we derive

Pr[X < 4] > 94734, Pr(X < 5] > .98343
PrlX < 6] > .99546, Pr(X < 7] > .99890
Pr[X < 8] > 99972, Pr[X < 9] S .99995

These overwhelming probability figures, which hold
for arbitrary f, p and ¢, clearly reveal the extreme
communication speed of the Single Randomization Al-
gorithm.




Since X is indicative of the delay of only a single
(though arbitrary) message in a permutation, and s
ince the probabilistic bounds are conservative lower
bounds, simulation is needed to evaluate the entire
delay of a permutation in actual networks. This will
be carried 1n Section 6.

5.2 Analysis of Single Randomization in
the Presence of Switch Faults

Let f, R and X denote the same entities as before,
and assume there are some S stuck switches in one
of the three columns. A source-destination path s —
f(s) is said to be a stuck path if it goes through a
stuck switch. Recall that X is the number of selected
source-destination paths that conflict with R. Let Y
be the number of stuck paths that conflict with R, and
Z the number of non-stuck paths that conflict with R.
Clearly, X = Y + Z. By studying Y and Z we will
be able to derive probabilistic estimates of X. This
will be carried out in three cases depending on which
column has the stuck switches.

CASE 1: The Stuck Switches in the Left Col-
umn

The distribution of Z is addressed first. Observe
that for every source s of a stuck switch, there is a
unique path from & to f(s), that is, the stuck paths
are unique and non-random. Let n be the number of
sources s that are input of non-stuck left switches such
that the random path s — f(s) potentially conflicts
with R. Following the same reasoning as in the fault-
free case, it is concluded that Z ~ B(n, ). Noting

 that n+Y = ¢, where ¢ is as defined in the previous

subsection, it follows that n < 2¢ because ¢ < 2q.

The value of Y is treated next. The stuck path-
s that conflict with R must go through the middle
switch [t]midaie of R. In particular, their sources must
be inputs s of stuck left switches [z]i.y¢ such that
s = [zazl(t)). In other terms, out of every stuck
switch there can originate at most one stuck path that
conflicts with R. Therefore, Y < the number of faulty
switches.

Since X =Y + Z and Z ~ B(n, ) and E(2) =
% < 2, we derive from Theorem 2 that for all k > 4,

PriX<Y+K2PriX<k>e?¥r %
In particular, we have

Pr(X <Y +4] > .94734, Pr[X <Y + 5] > .98343
PrlX XY +6]3.99546, Pr{X <Y + 7] > .99890
PriX XY +8] > .99972, PriX S Y +9] > .99995

These figures show that the smaller the number of s-
tuck switches is, the smaller Y is and the better these
probabilistic bounds are. In some sense, Y represents
the amount of delay degradation due to faulty switch-

Clearly, Y is equal in the worst case to the num-
ber of stuck switches. However, to get a more realistic
value for Y, Y will be averaged over all its possible
values corresponding to all the N! permutations, as-
suming that every permutation is equally likely.

Pr[Y = i]=[# of permutations that map ezactly i s-
tuck sources to some i oulputs of switch [blrigh:]/N!
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PrY =i] = (f)r#’*-ﬁm:‘;i-?i’i—,mw-sn

N=-S\(8

PrlY = i] = S5l

¢
Therefore, Y follows a hypergeometric distribu-
tion. It can now be concluded that the expected

value of Y is py %‘ = -}S; < 1 and the variance

VAR(Y) = 2ree=0) 4 8¢ S8 Since py < 1, it

follows that he entire delay of an average permutation
in the presence of stuck switches in the left column
is degraded by at most one cycle. To get tighter esti-
mates of Y, note that VAR(Y') can be easily shown to
be < 1, and therefore, the standard deviation oy < 1.
Applying the well-known Chebychev formula:
Pr[py—kay <Y <yy+ko‘y] >1- -El;,
we conclude that
PrlY <k]>1- 4.

Consequently, PrBY < 3] > 0.88, PrlY < 4] > 0.93
and Pr[Y < 5] > 0.96. In particular, the delay degra-
dation Y is at most 3 cycles for at least 88% of the N!
permutations. This shows that for the overwhelming
majority of permutations, the performance degrada-
tion due to switch faults is very small indeed.

CASE 2: The Stuck Switches in the Right Col-
umn

Due to the symmetry between the left and right
column in Clos networks, the delay X =Y + Z can be
similarly shown to satisfy: uy < 1, oy < 1 and the
distribution of Z is binomial of mean < 2. This leads
to the same conclusions as in the previous case.

CASE 3: The Stuck Switches in the Middle
Column -

We will first treat the case where the path R does
not go through a stuck switch. The other case is han-
dled later.

Observe that the source-destination paths that con-
flict with R must go through the same middle switch
as R (i.e., switch [tJmiddie). Therefore, if switch
[tlmiddie is not stuck, then the source-destination path-
s 8 — f(s) that conflict with R are non-stuck paths.
Therefore, Y = 0 and X = Z. Let C be as previously
defined, that is, the set of sources s such that s — f(s)
potentially conflicts with R. Let also z,, for every
source s € C, be a Bernoulli variable such that z, =1
if the randomly chosen path s — f(s) conflicts with R,
z, = 0 otherwise. Recall that X = ZSEC z,. Recall

also that the range of 2’ for every source s is A(s, f)
as defined in Section 4 for the case where the stuck
switches are in the middle column. Let ¢, = |A(s, f)|.
It can be argued as in Subsection 5.1 that every z,
is a Bernoulli variable of parameter ql The value of

¢, depends on the number and locations of the faulty
middle switches, on the permutation f, and on s itself.
Therefore, X is the sum of independent but differently
distributed Bernoulli random variables. Thus, X does
not necessarily follow a binomial distribution. This
makes the probabilistic analysis of X harder. Howev-
er, we will find next some useful bounds on the mean

(ux) of X.



Assume that the number of stuck switches is a
fraction €g of the number of the middle switches,
0 < e < 1. It is clear from the definition of A(s, f)
that the size g, of the range of 2’ for every source s is
at least ¢ — eg = (1 — £)g. We then have

<

BX =P ,eche, = L,ec & < =
Since ¢ < 2g, it follows that
Bx < 1%

Therefore, the smaller the number of stuck switches,
the smaller the bound on px. Equivalently, the larger
the the number of stuck switches, the more likely that
the expected value of X is high. This notion is exhib-
ited more precisely in our simulation results presented
in the next section.

We now treat the case when the middle switch
[t)midaie of R is stuck. Every source-destination path
that conflicts with R must go through the switch
[t)midare. Because switch [tImiadi. is stuck, every
source-destination path that conflicts with R must
conflict over ALL the links of R. Therefore, the
source-destination paths that conflict with R have
their sources in the same left switch [a)ies: as R and
their destinations in the same right switch [b],;,¢ as R.
Let C’ = {source s| (s is an input of switch [a)iess) and
(f(s) is an output of switch [b]rignt)}, and ¢/ = |C'].
Clearly, ¢’ < q.

By carrying out the same analysis as in the previous
two paragraphs, we get ux < -t < Lo leading

_ = S oo
to tilhe same conclusion that the mean of X increases
with ¢.

In summary, this section has presented theoretical
analysis of the fault-tolerant Single Randomization Al-
orithm. In fault-free Clos, it was found that the de-
ay is 4-8 cycles with an overwhelming probability. In
faulty Clos, it was found that the daley is hardly sen-
sitive to faulty switches in the left or right column,
but it is sensitive to the number of faulty switches in
the middle column.

Despite the reasonably tight probabilistic estimates
of the delay, simulations are still needed for several
reasons. First, the conservative nature of the proba-
bilistic lower bounds on the delay and the difficulty of
precisely measuring the delay degradation when the
faulty switches are in the middle column make sim-
ulations the only means of measuring the actual de-
lay. Second, as was indicated early on, the Multiple
Randomization Algorithm seems hard to analyze the-
oretically, making the simulation a proper alternative
method of mesuring its performance and comparing it
to the Single Randomization Algorithm.

6 Simulation

We have simulated the two algorithms on Clos net-
works C(p, q) for 4 < ¢ < 32, takin p = ¢ for conve-
nience. For each algorithm, for each value of ¢, and
for each randomly selected set of stuck switches (with
randomly selected stuck settings) in one of the three
columns, we did the following:

1) Several hundred randomly selected permutations
were routed.
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2) For each permutation we recorded the total number
of cycles needed to complete routing the N messages
of the permutation.

3) We averaged the number of cycles per permutation
over the several hundred routed permutations.

The results of the above simulation study are sum-
marized in Figure 3. The first three plots show the
effects of the number of switch faults on the routing
delay in Clos C(32, 32). The last three plots show the
effect of the switch size on the routing delay assuming
a single faulty switch.

In Figure 3-(a,b,c), the average number of cycles re-
quired to route a permutation is plotted as a function
of the number of faulty switches in the left column,
right column, and middle column, respectively. Two
major observations can be made. First, the 3 plot-
s show that the Multiple Randomization Algorithm
yields better permutation delays than the Single Ran-
domization Algorithm. The delay under multiple ran-
domization is consistently shorter by roughly one cycle
than the delay under single randomization. Second,
plots (a) and (b) show that the delay of permutation-
8 is hardly affected by the number of faulty switches
in the left or right columns, confirming what was as-
serted theoretically. Plot (¢) clearly shows that the
delay of permutations under both algorithms increas-
es as the number of stuck middle switches increases.
This confirms the approximate behavior observed in
the theoretical analysis. It should be pointed out that
the delay increase is about one cycle when the number
of faulty middle switches is 20, and about 1.5 cycles
gin multiple randomization) and 3 cycles (in single ran-

omization) when all the middle switches are faulty.
We note that when all the middle switches are stuck,
we made sure that the stuck settings kept every des-
tination accessible from every source.

This observed behavior clearly shows the great fault
tolerance capabilities of randomized routing, especial-
ly when using multiple randomization. The short de-
lays of 4.5-6 cycles per permutation, with or without
faults, makes the Multiple Randomization Algorithm
very attractive for routing, and that in turn makes
Clos networks highly desirable networks for parallel
computer systems of up to 1024 processors.

In Figure 3-(d,e,f), we plot the number of cycles
per permutation as a function of the switch size, as-
suming that there is a single faulty switch in the left,
middle, and right column, respectively. The intent is
to examine the effect of the switch size on the per-
formance of the two routing algorithms. Again it can
be observed that the Multiple Randomization Algo-
rithm consistently gives better performance than the
Single Randomization Algorithm, and that the former
algorithm tends to yield a stationary delay of 4 cycles
(!) for switch sizes > 16 . The delays are smaller for
smaller switch sizes.

In summary, the simulation results are certainly
consistent with the probabilistic analysis. They fur-
ther reinforce the conclusion that the proposed ran-
domized routing algorithms deliver high performance
even in the presence of one or more faulty stuck-at
switches in any one column, and that multiple ran-
domization is better than single randomization.
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7 Conclusion and Future Directions

This paper introduced and studied two randomized
self-routing algorithms for Clos networks. The perfor-
mance analysis and the simulations have shown that
the communication delay of any permutation is very
small, even in the presence of multiple switch fault-
s in any single column. Multiple randomization was
shown to yield shorter delays than single randomiza-
tion. The delay under multiple randomization is below
6.5 cycles per permutation in Clos networks of up to
1024 processors, even in the presence of many faulty
switches.

The ease of implementation of our routing algo-
rithms, their routing speed, their universality, and
their very low communication delay even in the P-
resence of faults make these algorithms superior to
any other known universal routing algorithm for C-
los. They also make Clos networks superior to the
non-universal banyan MIN’s. These advantages and
the comparative VLSI cost make Clos networks high-
ly. practical and attractive for large parallel systems.
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