Performance Analysis and Fault Tolerance
of Randomized Routing on Clos Networks

Manjit Bhatia
Department of Computer Science

Bowie State University
Bowie MD 20715
e-mail: mbhatia@cs.bowiestate.edu

and

Abdou Youssef
Department of EE and CS
The George Washington University
Washington D.C 20052
e-mail: youssef@seas.gwu.edu

Abstract

Beside universality and very low latency. Youssef's
randomized self-routing algorithms [25] have high
tolerance for multiple faults and more strikingly have
the potential for fault tolerance without diagnosis. In
this paper we study the performance of Youssef's
routing algorithms for faulty Clos networks in the
presence of multiple faults in multiple columns with
and without fault detection. We show that with fault
detection and diagnosis, randomized routing
algorithms provide scalable, very efficient and fault
tolerant routing mechanisms. Without fauit detection
and diagnosis, randomized routing provides good
Jfault tolerance for faulty switches in either the first or
the second column. The delavs become large for
faults in the third column or for faults in more than
one column. In conclusion, randomized routing
enables the system to run without periodic fault
detection/diagnosis, and if and when the performance
degrades beyond a certain threshold. diagnosis can
be performed to improve the routing performance.

Keywords: Clos Networks, Fault Tolerance,
Permuting, Randomized Routing.

1088-4955/96 $5.00 © 1996 IEEE

272

1 Introduction

Network fault tolerance [2, 7, 17, 22, 24] is
essential to the reliability and performance of paraliel
computer systems. This is especially true in the case
of multistage interconnection networks (MIN), which
have more components (e.g. switches), and thus
experience more faults, than static networks.

Network fault tolerance involves fault detection,
fault diagnosis, and fault accommodation. Fault
detection in networks is often resolved by periodic
system checking or by the mechanism of
acknowledgments of message delivery and time-out;
both methods incur high overhead. Fault diagnosis of
MIN's, which received considerable attention [4, 8,
10, 16, 19, 21, 23] but only for MIN's of small switch
sizes (2 x 2 or 4 x 4), is extremely costly in time
and/or hardware when switch sizes are large and
when multiple faults are to be tolerated. Therefore, it
is very desirable to have the ability to tolerate faults
either without fault detection and diagnosis, or with
diagnosis - but without explicit fault detection -
performed only when the performance degradation
crosses a certain threshold.

As for fault accommodation, several approaches
have been proposed. In the case of omega-like
banyan MIN's, the two main approaches are (1) the

5

%

hardware approach of adding extra switches and/or
extra links [1, 3, 13], and (2) the software approach
such as muitiple routing passes through the network
[4, 18, 22]. These approaches incur hardware and/or
latency penalty. In the case of Benes networks [5],
several fault-tolerant routing schemes have been
proposed [3, 12, 24] which take advantage of the
multiple paths or add some extra hardware.
However, these schemes do not solve the basic
problem of the slow Benes routing control: They
either route a subclass of permutations at a fast
control speed or route all permutations at a very slow
control speed. To remedy this situation, we proposed
in [25] randomized self-routing algorithms for Benes
and Clos networks [9], and studied some of their fault
tolerance capabilities in [6]. These algorithms,
applicable to all permutations and to asynchronous
routing, were shown to deliver high fault-free and
fault-tolerant performance.

This paper is a continuation of our work on fault-
tolerant randomized routing on Clos networks cited
above. The significant new contributions of the
present paper are two-fold. Firstly, we obtain
performance analysis results for the routing delays in
the presence of multiple faults in multiple columns of
Clos networks, as a function of network size and the
number of faulty switches. Thus, we remove the
restriction in [6] where faults were assumed to be in a
single column only. Secondly, we show that one of
our randomized routing algorithms in circuit-
switched Clos networks tolerates switch faults
without explicit fault detection and without fault
diagnosis. This paper presents performance analysis
of this very desirable capability.

Our performance analysis shows that with fault
detection and diagnosis, randomized routing
algorithms provide scalable, highly efficient and
fault-tolerant routing mechanisms even in the
presence of multiple faults in multiple columns. As
the number of faulty switches increases, the average
delay increases slowly and the Clos network degrades
gracefully. In the absence of fault detection and
diagnosis, we find that randomized routing provides
good fault tolerance for faulty switches in the first or
the second (but not both) column. Also for this case
(t.e. when faulty switches are either in the first or the
second column), the average delay increases slowly
as a function of the number of faulty switches, and
network degradation is quite gradual. However, the
delays increase dramatically for faults in the third
column or for faults in more than one column. In
these cases, as the number of faulty switches

273

increases, the average delay increases rapidly and the
Clos network degrades quickly. In summary, the
performance analysis presented in this paper leads us
to conclude that randomized routing enables the
system to run without periodic fault
detection/diagnosis, and if and when the performance
degrades beyond a certain threshold, diagnosis can be
performed to improve the routing performance.

2 Overview of Clos networks

In this section, we present a brief overview of
Clos networks and related routing concepts.

Throughout this paper p and q denote two
positive integers and N = pq. A Clos network C(p, q)
(see Figure 1) has N input terminals representing
processors, N output terminals representing the same
processors, and three columns of switches (left,
middle, and right). Each of the left and right columns
has p crossbar switches of size q x q. The middle
column has q crossbar switches of size p x p. The
switches in the left and right columns are labeled 0,
l,..,p-1, and the switches in the middle columns
are labeled 0, 1, ..., g~1. The input ports and the
output ports of every n x n switch have local labels 0,
1, .., n~1 (n =porq). The inter-column connectivity
is as follows: The y-th output of the x-th switch in
one column is linked to the x-th input of the y-th
switch in the next column. The input (or output) y
of a switch x in any column has a global label [xy].
Every switch x in the left, middle or right column
will be denoted [x] e (x] ... OF [x], eh respectively.
Similarly, every input/output port [xy] of the left,
middle or right column will be denoted by [xyl, o
[xyl , e OF [xy]ngm respectively. Figure 1 displays
Clos network C(3,4).

It is well known that any message at the output
port[xy], o Can be self-routed to any destination
address [x'y']ﬁgm [9]. The central idea of our
randomized routing is as follows. For each input port
[xy],eﬂ in a switch x in the left column, choose
randomly an output port z in switch x and let the
message exit through the output port [xz] ef” From the
output port [xz], o self-routing takes over and the

message reaches the destination [x'y']dw as described

above. Thus, the randomly chosen integers z, 0 < z <
q-1, control the switches in the left column just as
the two digits x' and y' in the destination address
[x'y'] control the switches in the middle and right
columns, respectively.

o
o1
Lot e at
U da a1
}odos an 19
t
4 9 L] 12
ot o
¢ 11 12 =
T a0 3 u
) F7) 2
Yo4uo, o
19 42 =2 E)
tt o =)
"
-

x
a
]
a2
114 g N (
a 1
to -] o M
N
12)] 4
noon 3
) 12 13pm ¢
1 13 t3be 7
=
P -] X ¢
u 1 U= ?
= = 10
il
n 3 D -

Figure 1: A Clos Network

Because the output ports in the left column are
chosen randomly, conflicts over links between the
columns are bound to arise and have to be resolved.
We will use unbuffered circuit switching and resoive
conflicts as follows: Whenever two or more paths
conflict over one link, only one path is fully
established while all others are abolished awaiting
future network cycles. (A network cycle is the time
interval needed to (1) establish non-conflicting
source-destination paths, and (2) deliver the
corresponding messages.)

3 The fault model

Our fault model is the stuck-at model where a
faulty switch is stuck at a one-to-one setting. The
justification for this fault model is the following. An
unbuffered n x n switch is {(or can be) implemented in
VLSI as an n x n grid of 2 x 2 switches. It is known
that 2 x 2 switches can be stuck at one of their two
states, cross or straight-through. Thus if certain 2 x 2
switches in an n x n crossbar switch are stuck, then
certain input ports of the crossbar can link to some
output ports but not to others. In the case where fault
diagnosis is periodically performed, it is too costly in
time and space to keep track of the set of accessible
output ports for each input port in each faulty switch,
and to adjust the routing algorithm accordingly; on
the other hand, if we assume the switch is stuck at
some one-to-one setting realizable by the faulty
switch, the necessary routing adjustment is more
manageable. However, when no fault diagnosis is
needed, there is no need to reduce the accessibility
information to a one-to-one setting, as we will

discuss later. Nevertheless, we keep the one-to-one
assumption for now because it simplifies our
simulations.

The fault model assumes muitiple switch faults.
However, if switch faults occur in different columns,
certain destinations may become inaccessible from
certain sources, and multiple passes the network are
then required. We discuss the connectivity issues in
Section 5.

4 The randomized routing algorithms for
Clos networks

Two self-routing algorithms, namely, the single
randomization algorithm, and the multiple
randomization algorithm were presented in [6] where
it was shown how these algorithms can tolerate
switch faults in the case where diagnostic information
about faulty switches is available at every input
terminal. We will not discuss this matter here; the
reader is referred to {6] for further details.

The matter of significance is that multiple
randomization naturally tolerates faults in circuit-
switched Clos networks without fault detection and
diagnosis. This is because when a source S tries to
establish a path to a destination D, if the path cannot
be established because it is blocked due either to
conflict or to a stuck switch, then the partially
established path is abolished and the source S
randomly selects a new control tag which is very
likely to be different from the current path. As long
as there is at least one establishable path between S

274

and D, this path will eventually' be chosen with
probability equal to 1 asymptotically. It is clear that a
source need not know the reason why its path did not
g0 through (whether because of conflict or because of
stuck switches). The repeated randomization enables
the sources to try different paths until a fault-free
path is established. '

The following observations about the diagnosis-
free multiple randomization routing algorithm should
be noted:

- The number, positions, and settings of the stuck
switches affect the latency of messages but not the
routing algorithm itself, so the routing algorithm
need not be modified.

- The switches may or may not be assumed to be
able to "tell" if they cannot link a given input port to
a requested output port (because of conflict or
internal faults). If stuck switches do not know that
they cannot honor requests correctly, requests are
misrouted and paths may be established to the wrong
destinations. This is handled by simply having the
wrong destination signal back to the source (using the
circuit-switching feedback wires) that it is the wrong
destination; the source tries again a new path using a
new random control tag. This maintains the
correctness of routing without diagnosis.

- The stuck-at configurations need not be one-to-one.
Correct routing is maintained as long as there is an
establishable path between every source-destination
pair. More generally, the fault model can be any
model, whether of the stuck-at variety or not, as long
as (1) there is a mechanism by which sources are
notified that their paths cannot be established, and (2)
there is at least one establishable path between every
source-destination pair. However, for reasons
mentioned earlier, we assume in our simulations that

the faults are stuck-at one-to-one settings.

5 Multiple faults and connectivity of Clos
network

It can be easily seen that if we have faulty
switches in two or more columns, then full
connectivity of the network is lost. In other words, in
case of multiple faults in multiple columns, there
eXiSt permutations that can not be routed in a single
pass. Under these circumstances, the permutations
can still be routed in multiple passes provided we

275

have dynamic full connectivity. Note that in multiple
pass routing, messages are sent to intermediate
destinations before they reach their ultimate
destinations. In the remainder of this paper we
consider randomized routing with multiple passes
and outline below the additional steps necessary in
our routing algorithms.

For any given fault configuration of the network,
we compute the graph G= (V, E), called the
connectivity graph, where the vertices V are the set of

N (=q2) processors and E is the set of edges:

E={G NI addirecy path can be established from
input terminal i to output terminal 7}

This graph G can be obtained from the fault
configuration of the network by an algorithm the
details of which are omitted for lack of space.

If the above graph G is fully connected (i.e.,
every pair of nodes are adjacent), then we have Static
connectivity in the network. If the graph G is strongly
connected (but not necessarily fully connected), then
we have dynamic full accesibility in the networtk.
Deciding full connectivity is simply checking if G is
complete, and deciding strong connectivity is a well
known procedure based on depth-first search [20]

Before using our routing algorithm in the the
presence of faults, we first test dynamic full
accessibility by constructing the connectivity graph G
and by checking its strong connectivity. Any faulty
configuration for which we do not have dynamic full
accessibility is discarded in our simulation study. In
case of dynamic full accesibilty, the minimum set of
intermediate nodes (destinations) between every
source-destination pair of nodes need to be
determined. This can be done by broadcasting G to
all processors and letting each processor i perform
BFS on G from node i. The resulting BFS tree gives
the shortest paths (and hence the minimum set of
intermediate nodes) from i to each destination.

6 Performance analysis

We have carried out performance analysis
(through simulation) of randomized routing on Clos
networks in the presence of faulty stuck-at switches
in one or more columns, We note that theoretical
performance analysis of these algorithms for fault-
free case was carried out earlier and reported in [6].

In this section we present the results of simulations
for randomized routing in the presence of a number
of different configurations of faulty switches in three
columns of Clos networks. To be specific, we choose
a Clos network C(g,q), q = 32. To investigate
scalability, we will show comparison with smaller
Clos networks also.

The following steps are carried out for different
fault configurations and for various values of g< 32,
and form a template to obtain the results for routing
delay:

1) The location of the faulty switches, if any, in any
desired column is chosen randomly. The 1-to-1
switch settings of the faulty switches are also chosen
randomly.

2) With the above fault configuration of the network
as input, the presence of dynamic full accessibility of
the network is checked. If not present, this particular
fault configuration is discarded and we go back to
step 1.

3)Several hundred randomly selected permutations
are routed. Each input terminal i attempts to establish
a path to its destination terminal j in each of the
permutations.

4)We record the total number of cycles needed to
complete the routing of the N (= q’) messages for
each of the permutations. (We define the cycle to be
the time interval needed to establish non-conflicting
paths and deliver the corresponding messages.)

5)The average number of cycles per permutation over
all the routed permutations is computed.

6)The maximum number of cycles required among
all the permutations is obtained. The spread between
the average and the maximum gives an indication of
the predictability value of the "average" metric.

We will use the results for the fault-free case as
our baseline and compare our results for faulty
networks to this case. We consider first the
performance of fault tolerance with diagnosis and
then without diagnosis.

6.1 Performance of fault tolerance with
diagnosis:

Recall that each processor i has for each each
destination j a minimum set of intermediate nodes

from i to j. While routing permutations each input
terminal i attempts to send its message to its
destination j by sending the message to the next node
in the i-to-j path where it is put in a queue behind
other messages that might be waiting. In subsequent
cycles, this process is repeated until all messages
reach their intended destinations.

We have considered a variety of configurations
of faulty switches in the three columns of Clos
network. In Figures 2 through 9 we present the
following results as being typical . . ~

1) Two faulty switches in the network: We consider
all possibilities for the locations of the two faulty

switches. Both faulty switches could be in any one

column or any two of the columns. In Figure 2, the x-
axis is labeled by 3-tuples to identify the location of
the faulty switches. For example the tuple (1,0,1)
means that there is one faulty switch in the first (left)
column and one in the third (right) column and no
faulty switches in the second (middie) column.

2) Three faulty switches in the network: We consider
all (ten) possibilities for the locations of the faulty
switches namely (3,0,0), (2,1,0), (2, 0,1), (1,2,0),
(1,1,1),(1,0,2), (0,3,0), (0,2,1), (0,1,2), (0,0,3). (See
the notation explained above.) The corresponding
results are shown in Figure 3. The results for the
above two scenarios are indicative of the dependence
of the routing delay on the distribution of a fixed
number of faulty switches in the three columns of the
network.

- First, we see from these graphs that in the
presence of two faulty switches, anywhere in the
network, the average delay is only one half cycle
more than the fault free case. In the presence of three
faulty switches, anywhere in the network, the average
delay is only 1.4 cycle more than the fault free case.
Secondly, these graphs demonstrate that the routing
delay is fairly independent of the distribution of the
faulty switches among the three columns of the Clos
network.

These two observations lead us to infer that
randomized routing exhibits excellent fault tolerance
in the presence of a small number (up to three) stuck-
at faulty switches anywhere in the network.

3) Next, we examine the behavior of the routing
delay as the number of faulty switches grows steadily
up to 25% of the total number of switches in the

276

Num Of Cycles

Num of Cycles

.

Clos Network C(32,32)

Randanized Routing with Fault Diagnasis
(Two Faulty Switcbes)

6 I i 1 1 1
5 ™ - Py -
-1
/0-———-0/ \Q
“__’-Q
4 | P
o avg
3k o max §
2 1 [1 L {

00,0 200 L1O0 020 Gl 002
Distribution of Faulty Switches
Figure 2

Cos Network C(32,32)

Randomlzed Routing with Fault Diagnostics

Clos Network C(32,32)

Randomized Routing with Fault Diagnosis

(Three Faulcy Switches)

Num Of Cycles

N/

b

.

°
-»—-—o——-o/ \o/o\u g/__olo——-o
LI,

W
-

120 e S S A S B B sy

100 -) /

*

Ld

60 b ‘//
sl ./-//°
o AvgCycles

/O
20 - ./°/° e Max Cycles
v

80 |- /
/

H H [1 I [1

Max Num of Cycles

.
(-}
i
1

0 2 3 4 5 6 7 8

Num of Faulty Switches in Each Cdumn
Figure 4

i ! 1 1 1 1 1 13

|

2
00,63,0,0 21,0 2,0,1 1,2,0 L1} 1,02 0,3,0 02,1 0,1,2 0,03
Distribution of Faulty Switches

Figure 3

Clos Network C{q,q)

Randomized Routtng with Fault Diagnesis
(Upto 8 faulty Switches in each Caumn)

120 G | N— T |
o q=20
100 |-
e g-24
80 v q-28 /: ’
v q=32 N/
60 - LJ
=7
40 | /./ -
v
20 p
[]
0 1 1 1 1 L 1

0 1 2 3 4 5 6 7

Num of Faulty Switches 1n Each Caumm

Figure 5

network. We summarize the results in Figure 4 by
plotting the routing delay versus the number / of
faulty switches, 1 < f < 8, in each column. This
graph gives us a sense of how the routing delay
grows with increasing numbers of faulty switches in
the network. We observe that for one faulty switch in
each column, the average routing delay is 5.31 cycles
and the maximum delay is 7 cycles. As the number of
faulty switches increases, the average (resp.,
maximum) routing delay increases gradually to 75.06
cycles (resp., 98 cycles) for the case when there are 8
faulty switches in each column (i.e. 25% of all the
switches in the network are fauity). This leads us to
conclude that the network would degrade gracefully
as the number of faulty switches increases.

To examine the scalibility, in Figure 5 we
compare the maximum routing delay as a function of
number of faulty switches f, 1 < f/ < 8, in each
column, in Clos networks of size g= 20, 24, 28, 32.
The narrow band in which all the curves lie brings
out the fact that the routing delay as a function of the
number of faulty switches is quite independent of the
network size. Thus, we have demonstrated that the
good fault-tolerant characteristics of randomized
routing scale very well with network size.

6.2 Performance of fault tolerance without
diagnosis:

In this subsection we present the results of
randomized routing in the presence of faulty switches
but without fault detection and diagnosis.

We first show that as long as there are
establishsable paths between a given source-
destination pair (s, d), the multiple randomization
algorithm will establish one correct path with
probability 1 asymptotically. We can readily prove
the following theorem.:

Theorem 1

In a faulty Clos network C(p, q) of N terminals (
N = pq), let ¢ be the number of establishable paths
between a given source-destination pair (S, D) (Note
that 0 < ¢ < N/q). In the presence of no other traffic,
the probability that the randomization routing
algorithm will take at most k attempts to establish a

correct path S -->Dis 1-(1- cq/N)k.

This theorem has the following consequences:

278

- If there is at least one establishable path from S to

cq

D (le., c 2 1), then 0 < —]—v— < 1, and thus the

probability of taking k attempts to find the first
establishsble path is strictly greater than 0.

- More importantly, since 1 - (1 - cq/N)k goesto 1 as
k increases, the probability of eventually selecting an
establishable path is asymptotically 1. In other terms,
S will certainly connect to D eventually.

- The number, positions, and actual configurations of
the stuck switches affect the network performance
only indirectly by way of affecting the number ¢ of
establishable paths between a given source-
destination pair.

- The theorem quantifies the extent to which latency
is affected by faults. For example, if a quarter of S-->
D paths are disabled due to faults, then the
probability of needing k attempts to find one
establishable path is 1 - (1/4)* . In particular, the
number of needed attempts is at most 4 with
probability 0.99609.

Of course, the above probabilistic results apply
when there is no traffic other than between S and D.
In the presence of traffic and ensuing path conflicts,
more attempts are needed to establish source-
destination paths. However, the above theoretical
results are highly indicative of the overhead caused
by the lack of diagnostic information. To obtain more
accurate estimates of the actual delay and the
overhead associated with diagnosis-free multiple
randomization, we have carried out simulations of
C(32,32) under a variety of faulty switch
configurations. We describe our results in the
following.

When we study the performance of fault

tolerance without fault detection or diagnosis, again

we ensure that we have dynamic full accessibility in
the network. However, the input terminal i is
presumed to be unaware of the path it should take to
reach its destination j. Under these circumstances, it
is possible that an input port i can go into an infinite
loop trying to establish a direct path to an output port
j to which no direct path exists. This problem is
resolved by keeping a count of the attempts to
establish a direct i-to-j path, and after a
predetermined number of attempts (typically 6), a
path is allowed to be established between input
terminal i and any available output terminal k in

L

which the message is queued behind any other
messages waiting to be routed to their respective

Clos Metwork C(32,32)
Randersd zed Rout ng ydthoug Faule Clagnests
(Eaulcy Swicches ta Fiest Cdumn)

9 T T T T T
° avg
3 b . & e e @ -
* max
- T -
S
>
-
2 gl .
£
z /
o/
Sheas sooeatm el N
Q a
0%\ o o
\a_\/\o__/4>\°
o
4 -
| B S N N N T A A N A N e]

3 Lt
0 2 46 31012141618202224262830323436
Num of Faulecy Switches tn Flest Columm
Flgure &

This process is repeated until all messages reach
their intended destinations. In general, several passes
are necessary before the entire permutation is routed.
Results for the routing delay for different faulty
switch locations are as foilows.

Faultv switches in the first (left) column only. Figure

6 depicts the routing delay as a function of the
number of faulty switches in the first column. We
observe that the average routing delay remains less
than six cycles even when all the switches are faulty.

Faulty switches in the second (middle) column only.
Results for this case are shown in Figure 7. We
observe that the average routing delay remains less
than eieven cycles for upto ten faulty switches
anywhere in the second column. (Note that the
locations of faulty switches, within the second
column, and their settings are chosen randomly.)
When the number of faulty switches in the second
column grows to twenty faulty switches, the average
routing delay increases to 34 cycles.

279

destinations. Subsequently, the terminal k attempts to
send this message to the intended destination port J.

Qos Network C(32,32)

Randanized Routdag without Faule Otagnosis
(FaiCy Switches 1n Second Column)
50 S S B e S e

1

30 -

0l ?]

10

Num Of Cycley

0 VA ORI S N NS R SN N N R
10 12 14 16 18 20 22 2

Num of Faulty Switches (o Second Column

Figure 7

Faulty switches in the third (right) column only. As
we see 1n Figure 8 the average routing delay is 179
cycles even for a single faulty switch in the third
column. As the number of faulty switches in the third
column increases, the average routing delay increases
steadily to 336 cycles when we have ten faulty
switches in the third column. This large delay will of
course slow the system greatly.

Two faulty switches in the network. The results for

the routing delay are shown in Figure 9 as a function

of the locations of the faulty switches in different -
columns (for explanation of the notation see the

previous subsection). The wild fluctuation in the

average routing delay for different locations of the

faulty switches is quite evident. Note also the large

delay when one or more of the switches is in the third

column.

In the absence of fault detection and diagnosis,
randomized routing provides good fault tolerance for
faulty switches in first or second (but not both)
columns. The delays become very large for faults in
the third column or for faults in more than one

column. As the number of faulty switches
increases, the average delay increases rapidly and the
Clos network would degrade quickly. A diagnostic

Clos MNetwork C(32,32)
Randaxnized Routing without Fault Diagnasls

(Faulty Switches in Third Col uwam)
700 T T T T T

o avg

-/. .

¢ max =
. /

T N

600

3 .
T 400 hd 4
ES
3 / .
3 G,
g e~ / \o/ °
é 300 -
- °/
o—o""
200 - -
0/
100 : : : L L
[+ 2 4 & 8 10 12

Num of Faulty Switches n Third Columa
Figure 8

7 Summary and Conclusions

In this paper we studied the fault tolerance
capabilities of multiple randomization self-routing
algorithm for Clos networks. It was demonstrated
that with fault detection and diagnosis, randomized
routing provides scalable, highly efficient and fault
tolerant routing mechanisms; as the number of faulty
switches increases, the average delay increases
slowly and the Clos network degrades gracefully. In
the presence of (say) three faulty switches, anywhere
in the network, the average delay is only 1.4 cycles
more than the fault-free case. As the number of fauity
switches increase, the average delay increases
gradually to 75 cycles when 25% of the switches are
faulty.

In the absence of fault detection and diagnosis,
randomized routing provides good fault tolerance
for faulty switches in the first or second (but not
both) column. The delays become very high (175
cycles for a single faulty switch) for faults in the third

280

test would then be highly desirable to improve the
performance to acceptable levels.

Clos Network C(32,32)

Randomized Routdng without Fault Dlagnosis

(Two Faulty Switches-Mult Rndm)
500 T T T T I

450
400 -
350 -
300
250 -

200 b /

Num Cf Cycles

150 -
/
100 -

50 -

L=

0.0.0 200 Lie 18,0 a2.0 al.l 0.0

Dtstribudon of Faulty Switches tn Different Columns

Figure 9

column or for faults in more than one column. As the
number of faulty switches increases, the average
delay increases rapidly and the Clos network
degrades quickly.

Based on the above results of our performance
analysis, we conclude that randomized routing
enables the system to run without periodic fault
detection/diagnosis for a variety of fault

configurations. If and detection/diagnosis for a

variety of fault configurations. If and when the
performance degrades beyond a certain threshold,
diagnosis can be performed. This diagnostic
information can be incorporated into our randomized
routing thus leading to greatly improved routing
performance. This fault tolerance scheme of
performing diagnosis when degradation crosses a
certain threshhold is certainly advantageous over
periodic diagnosis because diagnosis is costly. The
appropriate degradation threshhold can be determined
based on the diagnosis cost and the performance gain
achieved when fault information is available.

Accknowledgement: The second author wishes to
thank Professors Miroslaw Malek and Rami Melhem
for insightful discussions which inspired this work.

References

[1] G. B. Adam and H. J. Siegel, "The Extra Stage Cube: A
Fault-Tolerant I[nterconnection Network for
Supercomputer”, IEEE Trans. Compur.. Vol. C-31. No. 5.
pp443-454, May 1982.

(2] G. B. Adam, D. P. Agrawal and H. J. Siegel, "A Survey
and Comparison of Fault-Tolerant Multistage
Interconnection Networks”, Computer, Vol. 20, No. 6, pp.
14-27, June 1987. :

[3] D. P. Agrawal, “Testing and Fault Tolerance of
Multistage Interconnection Networks", Computer, pp. 41-
53, Apr. 1982.

[4] D. P. Agrawal and J. -S. Leu. "Dynamic Accessibility
Testing and Path Length Optimization of Multistage
Interconnection Networks", JEEE Trans. Compur., C-34,
Pp.255-266. Mar. 1985.

[5] V. E. Benes, Mathematical theory on connecting
networks and relephone rraffic, Academic Press. New
York, 1965.

[6] M. Bhatia and A. Youssef, " Efficient Randomized
Fault-tolerant Routing on Clos Network," IEEE Workshop
on Fauli-Tolerant Parallel and Distributed Svstems, pp.
217-224. July 1992,

[7] M. Chen and K. G. Shin, "Adaptive Fault-Tolerant
Routing Routing in Hypercube Multicomputers”, IEEE
Trans. Comput., Vol. 39, No. 12, pp. 1406-1416. Dec.
1990.

[8] V. Cherkassky. E. Opper and M. Malek, "Reliability
and Fault Diagnosis Analysis of Fault Tolerant Multistage
Interconnection Networks", Proc. 14th Ann. Int'l Svimp. on
Fault-Tolerant Computing, pp. 178-183, 1984.

[9] C. Clos. "A study of Non-blocking Switching
Networks," Bell System Tech Journal, Vol. 32, pp.406-
424, 1953,

[10] N. J. Davis IV, W. T.-Y. Hsu and H. J. Siegel, "Fault
Location Techniques for Distributed Control
Interconnection Networks", IEEE Trans. Comput., Vol. C-
24, pp.902-910, Oct. 1985.

(11] T. Feng and W. Young, " An O(log2 N} Control
Algorithm,"” Proc. of the Int'l Conf. Par. Proc., pp. 334-
340, 1985.

281

{12} S.-T. Huang and C.-H. Tung. "On Fault-Tolerant
Routing of Benes Networks", Journal of Information
Science and Engineering, Vol. 4, pp. 1-13, July 1988.

[13] V. P. Kumar and S. M. Reddy, "Augmented Shuffle-
Exchange Multistage Interconnection Networks", JEEE
Computer, pp. 30-40, June 1987.

[14] K. Y. Lee, " A New Benes Network Conirol
Algorithm,” IEEE Trans. Comput., C-36, pp. 768-772, May
1987.

15] G. F. Lev, N. Pippenger and L. G. Valiant, "A fast
Parallel Algorithm in Permutation Networks," IEEE Trans.
Comput., C-30, pp. 93-100, Feb. 1981.

[16] A. Mourad. B. Ozden and M. Malek, "Comprehensive
Testing of Muitistage Interconnection Networks". IEEE
Trans. Comput.. Vol. 40, No. 8, pp. 935-951, Aug. 1991.

[17] D. K. Pradhan. "Fault-tolerant Multiprocessor Link
and Bus Network Architectures.” IEEE Trans. Compu.,
Vol. 34, No 1, pp. 33-45, Jan. 1985.

[18] J. P. Shen and J. P. Hayes, "Fault-Tolerance of
Dynamic Full-Access Interconnection Networks”, IEEE
Trans. Comput., Vol. 34, No 1, pp. 241-248, Mar. 1984.

[19] S. Thanawastien and V. P. Nelson, “Obtimal Fault
Detection Sequences for Shuffle/Exchange Networks",
Proc. 13th Ann. Int'l Symp. on Fault-Tolerant Computing,
pp- 442-445, June 1983.

[20] R. E. Tarjan. "Depth First Search and Linear Graph
Algorithms", SIAM J. Computing 1:2, pp. 146-160,1972.

[21] N. -F. Tzeng, P.-C. Yew and C. -Q. Zhu, "Fault-
Diagnosis in a Multi-path Interconnection Network", Proc.
16th Ann. Int'l Symp. on Fault-Tolerant Computing, pp. 98-
103, 19836

[22] A. Varma and C. S. Raghavendra, "Fault-Tolerant
Routing in Multistage Interconnection Networks," IEEE
Trans. Comput., Vol. C-38, No. 3, pp. 385-393, March
1989.

[23] C.L. Wu and T. Y. Feng, "Fault-Tolerant Routing in
Multistage Interconnection Networks”, IEEE Trans.
Comput., Vol. C-30, pp.743-758, Oct. 1981.

[24] Y. -M. Yeh and T. -Y. Feng, “Fault-Tolerant Routing
on a Class of Rearrangeable Networks", Int'! Conference on
Parallel Processing, Vol. I, pp. 305-312, 1991.

[25] A. Youssef, “ Randomized Routing algorithms for
Clos Networks", Computers & Electrical Engineering, an
International Journal, Vol. 19. No. 6, pp.419-429, 1993.

