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Abstract ~This paper will study product graphs as inter-
connection networks. The topological properties of product net-
works will be presented, and generic, divide-and-conquer algo-
rithms for point-to-point routing, broadcasting and permuting
will be designed. Finally, linear arrays, rings, meshes, toruses
and trees will be embedded on product networks.

Introduction

In this paper a unified framework is developed in which
most existing networks and mahy new ones can be studied. The
class of cartesian product graphs which will be called here prod-
uct networks, will provide this common framework. Multidi-
mensional meshes, multidimensional toruses, binary and gener-
alized k-ary hypercubes and others belong to this class. Other
useful product network that can be extended with fixed node
degree will be proposed. The paper will study the topologi-
cal properties of product networks and develop various generic
routing and embedding algorithms for them.

Product Networks

In this section product graphs will be reviewed and their
topological properties will be presented.

Let Gy = (V1, Ey) and G = (Va, Ey) be two graphs. The
product graph of G; and G, denoted G1Gy = (W, E), is
a graph where the set of nodes is the product set ,V, =
{z1v2 [z1€Viand 23 € Vo) and E = {{z1z2, 11, 92) | (21 = 1y
and (29,92) € B2) or (23 = y; and {z1,1) € Ey)}. The graphs
G and G, are called the factors of G1G,.

As can be observed, G1G, consists of V2| copies of G,
where every set of the }V,| corresponding nodes of these copies
form a G, graph. The copy of Gz in G1G; that corresponds to
anode r; € V; is denoted z,G,. Its set of nodes is {z120 | 29 €
Va2} and its set of edges is {(z123,2,y;) | (z2,72) € E2}. Sim-
ilarly, The copy of Gy in GG, that corresponds to a node
z7 € V3 is denoted G;z,.

Note that the product G1G2G3..G, = (V, E)of n networks
Gr=(WN,E),Gy = Vo, Ey), ..., Gy = (Va, Ey,) can be derived.
Clearly, V = VWV, V4.V, and E = {z122.. 20, 1192...yn) | there
exists an i such that {z;,v;) € E; and for every j # 1 we have
z; = y;}. If all Gy’ are equal (to some G), Gy...G, is denoted
G™.

Denote by L,, R, and K, alinear array of p nodes, a ring
of p nodes, and a complete graph of p nodes, respectively. It can
be seen that a py xp; X ... X p, mesh (resp., torus) is Ly Ly,..L,,
(resp., Rp Ry,...Rp. ). Similarly, an n-cube Qn is the product
network k7. The n-cube of radix r > 2 is K7

A network is said to be indefinitely extendable if it can be
extended without increasing the node degree. Linear arrays,
rings, and meshes are indefinitely extendable but hypercubes are
not. As degree(G1G,) = degree(Gy)+degree(G,), we conclude
that if Gy is indefinitely extendable then the product GG, is
indefinitely extendable. Note that G2 does need not be indefi-
nitely extendable. Thus, the line-hyeprcube L.Q,, the ring-
hypercube R.Q, and the mesh-hypercube LyL,Q, are in-
definitely extendable to L,Qn, R,Q, and Ly LyQy respectively,
forany s>r,p' >p, ¢ > q- Hence, the product operator pro-
vides an excellent cube augmentation scheme. It has also other
desirable properties as summarized below.
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Denote by dg{z,y) the distance from z to y in G, by D¢
the diameter of G, by dg the average distance of G ,and by Cg
the connectivity of G, that is, 1+the largest number of nodes
that can be deleted without disconnecting G.

Theorem 1. Let G; and G, be two graphs.
1) dg,c, (22, yy") = dg,(2,9) + dg,(z',¢/).
2) D(G2G2) = D(Gh1) + D(Ga).

3) dg,6, = dg, + dg,.

4) Cg,6, 2 Cq, + Cg,.

Proof. See [5].

In part (4) above, the equality holds for some products
but not for others. As a corollary of this theorem, the diam-
eter, average distance and connectivity of meshes, toruses and
hypercubes can be rediscovered and these same measures can
be concluded for the line-hypercube, ring-hypercube and mesh-
hypercube.

Routing

Let G; and G, be two networks such that each Gy is en-
dowed with a point-to-point routing algorithm ROUTEg,(s,d)
which sends a message from s to d, a broadcasting algorithm
BROADCASTG, (s, M) which broadcasts a message M from s
to all other nodes, and a permuting algorithm PERMUTEg,(f)
which routes a message from every node z to node f(z), where
[ is a permutation. These algorithms will be used to devise cor-
responding algorithm for G1G; in a divide-and-conquer fashion.
procedure ROUTEg, g, (3152, d;d3)
begin

ROUTEGl (81 S2, dl 82);

ROUTEG,(dys2,d1d>);
end

procedure BROADCAST, 5, (5152, M)
begin
1. BROADCASTg,,, (5182, M);
2. forall nodes z in G, do in parallel
BROADCAST ¢, (252, M);
end

Note that if each ROUTEg, and BROADCAST, is optimal in
time, then ROUTEG, , and BROADCAST, ¢, are optimal.

Next, the more elaborate permutation routing will be ad-
dressed. Our approach is based on Clos routing [3]. We review
Clos networks first. A Clos network C(p, ¢) has pg input termi-
nals, pg output terminals and three columns of switches. The
Ist and 3rd columns have p ¢ x ¢ crossbar switches each. The
2nd column has ¢ p X p crossbar switches. The switches in each
column are labeled 0, 1, ... . The input ports and the outP?t
ports of every switch z are labeled zy (y=0,1,...)so that 2y 13
the y-th port of switch z. The interconnection between the first
two columns links output port zy in the 1st column to input por'
yz in the 2nd column. Similarly, the interconnection between
the last two columns links output port yz in the 2nd colum®
to input port zy in the 3rd column. It has been shown in {15
that every permutation of pq clements is realizable by C(p.g)in
O((pq)®) time, that is, for every permutation f, there are switch
settings for all the switches so that the source-destination paths
¢ — f(i) are established without conflict. Call the algorithm
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. that determines the switch setting CLOS,,(f).

Let zy be an arbitrary source and zy — f(zy) the cor-
responding source-destination path established by CLOS,,(f).
The detailed parts of this path are:

Yy~ 2y = y'z -y’ — 2y = 2y = f(zy)
for some 2’,y" and y". Denote by f, the permutation that maps
y to ¥ in switch z of the 1st column, by g, the permutation
that maps z to 2’ in switch y' of the 2nd column, and by h,s the
permutation that maps y' to ¥ in switch z’ of the 3rd column.

Suppose that f is to be routed in G, G5, where G, has P
nodes labeled 0,1, ..., p~1, and G has ¢ nodes labeled 0,1,...,9~
1. By corresponding every node zy in G;G to input/output
terminal zy of C(p,q), every zG; to switch z in the 1st/3rd
column of C(p, ¢), and every G,y to switch y in the 2nd column
of C(p, q), we obtain an algorithm for GGy
Procedure PERMUTEg, ,(f)

1. Let CLOS,,(f) determine the f,’s, gy's and h,’s.
2. PERMUTE,;¢,(f;) for all z in parallel

3. PERMUTEg,, (g,) for all y' in parallel

4. PERMUTE g, (hy) for all 2’ in paraliel

Proof of correcteness: Let M,, be the message to be send from
the arbitrary node zy to node f(zy). Let z', y' and 3" be
as before. After routing f, on zG,, My is at node zy'. Af-
ter routing g, on Ghy', M., is at node gy (z)y = 2'y'. Fi-
nally, after routing h, on z'Gy, the message M, is at node
'ha(y') = 3'y" = f(2y).

The major drawback of this algorithm is the inefficiency of
the CLOS algorithm. However, we have developed a new ap-
proach to self-routing on CLOS networks [4]. This approach is
based on the observation that if the 1st column in a Clos network
is set to some configuration, the resulting network becomes self-
routed using destination addresses. Accordingly, the approach
seeks, for every given family of permutations, a configuration to
which to set the first column so that the resulting delta network
realizes all the permutations of the family. Such configuration of
the first column is called the compatibility factor. Compatibility
factors were found in [4] for several important families of per-
mutations. These include the families of permutations required
by FFT, bitonic sorting, tree computations, multidimensional
mesh/torus computations, multigrid computations [2] as well as
the Omega permutations.

It will be argued next that if the compatibilty factor is
known, then PERMUTEgG, s, becomes a self-routing algorithm
and step 1 is bypassed. The f,’s are clearly the compatibility
factor and hence known. gy{z) = z' =the first part of the
destination address z'y" = f(zy) of the message M.,. Thus,
node zy' can alone determine its intermediate destination z'y’.
hei(y') = y" =the second part of the destination address of
Mzy. Thus, node z'y’ can alone determine the destination 2’y

A noteworthy special case is the Omega-realizable permu-
tations. Their compatibility factor is the identity permutation.
That is, the f.’s for every Omega-realizable permutation [ are
identity permutations and therefore, do not have to be routed.
Thus, step 1 and 2 can be bypassed in this case while steps 3
and 4 are executable in a distributed manner,

Next we evaluate the communication complexity of per-
muting using PERMUTE and taking the number of conflict-free
steps as the complexity measure.

Theorem 2. Let P(G) be the minimum number of steps needed
for permuting in G. then,

1) P(G1Gy) SMIN(2P(Gy) + P(G3),2P(Gs) + P(Gy)).

2) P(G1G2..Gy) S 2 T2, P(Gi)-MAXE (P(G,))

3) For §-realizable permutations, P(G,G;...Gy) < Efﬂ P(G))
The proof follows directly from the algorithm and the above

discussion. We can then conclude: P(p x p mesh) < 3(p~ 1),
P(K?)<2n—1and P(L,Q,) SMIN(27r + 2n - 4,4n 4 r — 5).

Embedding in Product Networks

An embedding of a guest graph G = (Vy, Ey) on a host

graph (i.e., network) H = (Vj,, E4) is a mapping f from Vyto Vy.
The standard goodness measure of a mapping f is the dilation
cost: dilation(f) =MAX{ds,(f(z), f(¥)) | (z,¥) € E;}. We
will limit ourselves to one-to-one embeddings, that is, to cases
where f is one-to-one. In this section, embeddings for lines,
rings, meshes, toruses and trees will be constructed on product
networks using the embeddings of these structures on the factor
networks. We first start with a general theorem.
Theorem 3. Iffori = 1, ..., k the graph G, can be embedded on
the graph H; with a mapping f; of dilation d;, then G1G,..Gy
can be embedded on HyH,...H, with dilation MAX(dy, ..., dy)
with the mapping f(@1zi)=fi(z1)... fulzs),

Therefore, if a linear array L, (resp., ring R,.) can be
embedded on H; with dilation cost d;, for every i, then the
k-dimensional p; X py X ... X p; mesh (resp., torus), can be
embedded on Hy H,...H; with dilation cost MAX(dy,...,d;). In
particular, by using the standard embedding of linear arrays and
rings in meshes and toruses, one can achieve an embedding of a
linear array or a ring in the product graph.

Next we embed a tree in G1G,. Assume that T; is a tree of
hight h; that can be embedded in G; with dilation d; (i=1,2).
Let z; be a the root node of T; in G;. Embed the tree Tz,
in Gyzy, then embed the tree 7,73 of root z122 in ,G, for
all nodes z; of G;. The resulting embedded structure Tyz, U
Uz,ec, {2172} is clearly a tree of hight hy + hy and the dilation
cost of the embedding is MAX(d,, d,).

Conclusions

A theory of product interconnection networks has been de-
veloped in this paper. Product networks were shown to include
many of the existing networks as well as other useful, indefi-
nitely extendable networks. It was shown that as the number
of nodes grows multiplicatively, the degree, diameter, average
distamce and connectivity grow additively. Finally, product
networks were constructively shown to yield to a divide-and-
conquer approach of routing and embedding.
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