
Parallel Algorithms for Entropy-Coding Techniques ∗

ABDOU YOUSSEF
Department of EE & CS

The George Washington University
Washington, DC 20052, USA

email: ayoussef@gwu.edu

Abstract: With the explosion of imaging applica-
tions, and due to the massive amounts of imagery data,
data compression is essential. Lossless compression,
also called entropy coding, is of special importance be-
cause not only it serves as a stand-alone system for
certain applications such as medical imaging, it also is
an inherent part of lossy compression. Therefore, fast
entropy coding/decoding algorithms are desirable. In
this paper we will develop parallel algorithms for sev-
eral widely used entropy coding techniques, namely,
arithmetic coding, run-length encoding (RLE), and
Huffman coding. Our parallel arithmetic coding algo-
rithm takes O(log2 N) time on an N -processor hyper-
cube, where N is the input size. For RLE, our parallel
coding and decoding algorithms take O(log N) time on
N processors. Finally, in the case of Huffman coding,
the parallel coding algorithm takes O(log2 N +n log n),
where n is the alphabet size, n << N . As for decoding,
however, both arithmetic and Huffman decoding are
hard to parallelize. However, special provisions could
be made in many applications to make arithmetic de-
coding and Huffman decoding fairly parallel.

1 Introduction

With the explosion of imaging applications and due
to the massive amounts of imagery data, data com-
pression is essential to reduce the storage and trans-
mission requirements of images and videos [5, 11, 14].
Compression can be lossless or lossy. Lossless com-
pression, also called entropy coding, allows for perfect
reconstruction of the data, whereas lossy compression
does not. Even in lossy compression, which is by far
more prevalent in image and video compression, en-
tropy coding is needed as a last stage after the data has
been transformed and quantized [14]. Therefore, fast
entropy coding algorithms are of prime importance,
especially in online or real-time applications such as
video teleconferencing.

Parallel algorithms are an obvious choice for fast pro-
cessing. Therefore, in this paper we will develop par-
allel algorithms for several widely used entropy coding
techniques, namely, arithmetic coding [13], run-length
encoding (RLE) [16], and Huffman coding [4]. Our
parallel arithmetic coding algorithm takes O(log2 N)
time on an N -processor hypercube, where N is the in-
put size. Unfortunately, arithmetic decoding seems to
be hard to parallelize because it is a sequential process

∗This work was performed in part at the National institute
of Standards and technology.

of essentially logical computations. In practice, how-
ever, files are broken down into many substrings before
being arithmetic-coded, for precision reasons that will
become clear later on. Accordingly, the coded streams
of those substrings can be decoded in parallel.

For RLE, we design parallel algorithms for both en-
coding and decoding, each taking O(log N) time. Fi-
nally, in the case of Huffman coding, the coding algo-
rithm is easily data-parallel. The statistics gathering
for computing symbol probabilities before construct-
ing the Huffman tree is parallelized to take O(log2 N)
time. Like arithmetic coding, Huffman decoding is
highly sequential. However, in certain applications
where the data is inherently broken into many blocks
that are processed independently as in JPEG/MPEG
[5, 11], simple provisions can be made to have the bit-
streams easily separable into many independent sub-
streams that can be decoded independently in parallel.

It must be noted that other lossless compression
techniques are also in use such as Lempel-Ziv, bit-
plane coding, and differential pulse-code modulation
(DPCM) [14]. The first two will be considered in fu-
ture work. The last technique, DPCM, is the subject
matter of another paper appearing in this conference
[?].

The paper is organized as follows. The next section
gives a brief description of the various standard par-
allel operations that will be used in our algorithms.
Section 3 develops a parallel algorithm for arithmetic
coding. Section 4 develops parallel encoding and de-
coding algorithms for RLE. Section 5 addresses the
parallelization of Huffman coding and decoding. Con-
clusions and future directions are given in section 6.

2 Preliminaries

The parallel algorithms designed in this paper use sev-
eral standard parallel operations. A list of those oper-
ations along with a brief description will follow.

• Parsort(Y [0 : N − 1]; Z[0 : N1], π[0 : N − 1]):
This operation sorts in parallel the input array
Y into the output array Z, and records the per-
mutation π that orders Y to Z: Z[k] = Y [π[k]].
Of the many parallel sorting algorithms, we use
the fastest practical one, namely, Batcher’s bitonic
sorting [2], which takes O(log2 N) parallel time on
an N -processor hypercube.

• C=Parmult(A0:N−1): It multiplies the N ele-
ments of the array A, yielding the product C. In

1



this paper, the elements of A are 2 × 2 matrices.
This operation clearly takes simply O(logN) time
on O(N) processors connected as a hypercube.

• A[0, N − 1]=Parprefix(a0:N−1): This is the well-
known parallel prefix operation [7]. It computes
from the input array a the array A where A[i] =
a[0] + a[1] + ... + a[i], for all i = 0, 1, ..., N − 1.
Parallel prefix takes O(log N) time on N proces-
sors connected in a variety of ways, including the
hypercube.

• A[0 : N − 1]=Barrier-Parprefix(a[0 : N − 1]):
This operation assumes that the input array a is
divided into groups of consecutive elements; ev-
ery group has a left-barrier at its start and a
right-barrier at its end. Barrier-Parprefix per-
forms a parallel prefix within each group indepen-
dently from other groups. Barrier-Parprefix
takes O(log N) time on an N -processor hyper-
cube. To see this, let f [0 : N − 1] be a flag array
where f [k] = 0 if k is a right-barrier, and f [k] = 1,
otherwise. Clearly, A[i] = f [i − 1]A[i − 1] + a[i]
for all i = 0, 1, ..., N − 1. The latter is a linear re-
currence relation which can be solved in O(log N)
time on an N -processor hypercube [6].

3 Parallel Arithmetic Coding

Arithmetic coding [13] relies heavily on the probability
distributions of the input files to be coded. Essentially,
arithmetic coding maps each input file to a subinterval
[L R] of the unit interval [0 1] such that the probability
of the input file is R−L. Afterwards, it represents the
fraction value L in n-ary using r = d− logn(R − L)e
n-ary digits, where n is the size of the alphabet. The
stream of those r digits are taken to be the code of the
input file.

The mapping of an input file into a subinterval [L R]
is done progressively by reading the file and updating
the [L R] subinterval to always be the corresponding
subinterval of the input substring scanned so for. The
update rule works as follows. Assume that the input
file is the string x[0 : N−1] where every symbol is in the
alphabet {a0, a1, ..., an−1}, and that the substring x[0 :
k−1] has been processed, i.e., mapped to interval [L R].
Let Pki be the probability that the next symbol is ai

given that the previous symbols are x[0 : k−1]. Divide
the current interval [L R] into n successive subintervals
where the i-th subinterval is of length Pki(R − L) for
i = 0, 1, ..., n− 1, that is, the i-th subinterval is [Li Ri]
where Li = (Pk0 + Pk1 + ... + Pk,i−1)(R−L) and Ri =
Li + Pki(R − L). Finally, if the next symbol in the
input file is ai0 for some i0, the update is L = Li0 and
R = Ri0 . The last value of the interval [L R] after the
whole input string has been processed is the desired
subinterval.

The alphabet {a0, a1, ..., an−1} can be arbitrary.
Some of the typical alphabets are the binary alphabet
{0, 1} for binary input files, the ascii alphabet, and any
finite set of real numbers or integers as may occur in
run-length encoding. In the last category, the alpha-
bet {a0, a1, ..., an−1} can be easily mapped to the more
convenient alphabet {0, 1, ..., n− 1}. That mapping is

applied at the outset before arithmetic coding starts,
and the inverse mapping is applied after arithmetic de-
coding is completed. Henceforth, we will assume the
alphabet to be {0, 1, ..., n− 1}.

The conditional probabilities {Pki} are either com-
puted statistically from the input file or derived from
an assumed theoretical probabilistic model about the
input files. Naturally, the statistical method is the one
used most often, and will be assumed here. The struc-
ture of the probabilistic model is, however, still useful
in knowing what statistical data should be gathered.
The model often used is the Markov model of a certain
order m, where m tends to be fairly small, in the order
of 1–5. That is, the probability that the next symbol
is of some value a depends on only the values of the
previous m symbols. Therefore, to determine statisti-
cally the probability that the next symbol is a given
that the previous m symbols are some b1b2...bm, it suf-
fices to compute the frequency of occurrences of the
substring b1b2...bma in the input string, and normal-
ize that frequency by N , which is the total number of
substrings of length m + 1 symbols in the zero-padded
input string. The padding of m 0’s to the left of x
is taken to simplify the statistics gathering at the left
boundary of x: assume that the imaginary symbols
x[−m : −1] are all 0.

To summerize, the sequential algorithm for comput-
ing the statistical probabilities and performing arith-
metic coding is presented next.

Algorithm Arithmetic-coding(in: x[0 : N − 1]; out: B)
begin
/* The alphabet is assumed to be {0, 1, ..., n− 1} */

Phase I: Statistics Gathering
for k = 0 to N − 1 do

/* compute {Pki}′s which are initialized to 0*/
compute the frequency fk of the substring
x[k −m : k] in the whole string x;
set Qk = fk/N ;
let i = x[k], and set Pki = Qk;

endfor
for k = 0 to N − 1 do

Let i = x[k]; set Pk = Pk0 + Pk1 + ... + Pk,i−1;
endfor

Phase II: finding the interval [L R] correspond-
ing to the string x
Initialize: L = 0 and R = 1;
for k = 0 to N − 1 do

D = R− L; L = L + PkD; R = L + QkD;
endfor

Phase III: computing the output stream B
r = d− logn(R− L)e;
Take the n-ary representation of L = 0.L1L2...;
B = [L1 L2 ... Lr];

end

To parallelize the Arithmetic-coding algorithm, the
first two phases have to be parallelized. Note that in
Phse III, L is naturally represented in binary inside the
computer, so that phase is nothing more than comput-
ing dr log ne and chopping off the first r bits of the
binary representation of L.



Parallelization of Phase I: Statistics Gathering
Each substring x[k−m : k] is treated as an (m+1)-

tuple of integer components, for k = 0, 2, ..., N −
1; those N tuples are denoted as an array Y [0 :
N − 1]. Denote the m + 1 components of Y [k] as
(Ym[k], ..., Y1[k], Y0[k]), that is, Y0[k] = x[k], Y1[k] =
x[k − 1], . . . , Ym[k] = x[k −m]. Sort Y into Z using
Parsort(Y ;Z, π), where Z[k] = Y [π[k]]. Clearly, all
identical tuples are consecutive in Z. Associate Qπ[k]

and Pπ[k],Z0[k] with tuple Z[k] = Y [π[k]].
We will divide Z into segments and supersegments.

A segment of value T is a maximal subarray of con-
secutive elements of Z where every tuple is of value T .
Clearly, Z has as many segments as there are distinct
tuples in Y . A supersegment is a maximal set of consec-
utive segments where the tuple value differ in only the
rightmost component. Note that there can be at most
n segments per supersegment because there are only
n different alphabetic values for the rightmost compo-
nent of a tuple. The probabilities Qk’s and Pk,x[k]’s
are then computed as follows:

Procedure Compute-probs(input: Z[0 : N − 1], π[0 :
N − 1]; output: Qk’s, Pk,x[k]’s)
begin

1. Put a left-barrier and a right-barrier at the be-
ginning and at the end of every segment, respec-
tively. It can be done in the following way. First,
put a left barrier at k = 0 and a right barrier at
k = N − 1. Afterwords, do
for k = 0 to N − 2 pardo

if Z[k] < Z[k + 1], put a right barrier at
k and a left barrier at k + 1.

endfor

2. Let g[0 : N − 1] be an integer array where every
term is initialized to 1;

3. G[0 : N − 1]=Barrier-Parprefix(g).
Clearly, if k corresponds to a right barrier of a
segment, then G[k] is the number of terms of that
segment, that is, G[k] is the frequency of Z[k] =
Y [π[k]].

4. Broadcast within each segment the G[k] of the seg-
ment’s right barrier, and then set in parallel every
G[i] term in the segment to G[k].

5. for k = 0 to N − 1 pardo
set Qπ[k] = G[k]/N and Pπ[k],Y0[π[k]] = G[k]/N .

endfor

end
Observe that the Qπ[k]’s within any one single seg-

ment, and therefore the Pπ[k],Y0[π[k]]’s within any seg-
ment, are all equal. We call Qπ[k] (or Pπ[k],Y0[π[k]])
the probability of that segment. Observe also that
the cumulative probability Pk, which is defined as
Pk0 + Pk1 + ... + Pk,x[k]−1, is the sum of probabilities
of all tuples where the m leftmost symbols are equal
to x[k −m : k − 1] and where the rightmost symbol is
≤ x[k] − 1. Stated otherwise, Pπ[k] is the sum of the
probabilities of all the segments within the superseg-
ment containing k such that the m leftmost symbols
are equal to those of Y [π[k]] and the rightmost symbol

is ≤ x[π[k]]− 1. The following procedure will compute
those cumulative probabilities Pk’s.
Procedure Compute-cumprobs(input: Z, π, Qk’s,
Pki’s; output: Pk’s)
begin

1. Put a left-barrier and a right-barrier at the begin-
ning and at the end of every supersegment, respec-
tively, as follows. For each k, denote by Z ′[k] the
m-tuple consisting of the m leftmost components
of Z[k], that is, Z ′[k] is all but the rightmost com-
ponent of Z[k]. Put a left barrier at k = 0 and a
right barrier at k = N − 1. Afterwords, do
for k = 0 to N − 2 pardo

if Z ′[k] < Z ′[k + 1], put a right barrier at
k and a left barrier at k + 1.

endfor

2. Let h[0 : N − 1] be a real array where every term
is initialized to 0; for each k = 0, 1, 2, ..., N − 1,
h[k] is associated with Z[k].
for k = 0 to N − 1 pardo

if k happens to be the start of a segment
(rather than a supersegment), then

set h[k] = Pπ[k],Z0[k].
endfor

3. H[0 : N − 1]=Barrier-Parprefix(h), using the
supersegment barriers.
Note that H[k] = the sum of the probabilities of all
the segments within the supersegment containing
k such that the m leftmost symbols are equal to
those of Y [π[k]] and the rightmost symbol is ≤
x[π[k]]. After the discussion above, H[k] = Pπ[k]+
Qπ[k]. This justifies the next step.

4. for k = 0 to N − 1 pardo
Pπ[k] = H[k]−Qπ[k]. end-

for

end

Time Analysis

For each k, assume that x[k], Y [k] and Z[k] will be
hosted by processor k. The gathering of x[k −m : k]
to processor k to form Y [k] requires m shifts that
send data from node i to node i + 1 for all i. Each
shift takes O(log N) communication time on an N -
processor hypercube. Therefore, the forming of Y
takes O(m log N) = O(log N) communication time for
the m shifts. The reason m was dropped from the time
formula is because m is fairly small, in the order of 1−5
usually, and thus is assumed to be a constant.

Parsort takes O(log2 N) time on an N -processor
hypercube.

Procedure Compute-probs will be shown to take
O(log N) time. Step 1 involves an exchange of the val-
ues Z[k] and Z[k+1] between processors k and k+1, for
all k. This is accomplished by two shifts: one from k to
k+1 and the other from k+1 to k, for all k. Thus, this
step takes O(log N) time. Step 2 takes O(1) time. Step
3, Barrier-Parprefix, takes O(log N) time. Step 4,
being several independent broadcasts within nonover-
lapping portions of the hypercube, also takes O(log N)
time. Finally, step 5 takes O(1) time because it is a



simple parallel step. This establishes that the whole
procedure takes O(log N) parallel time.

The analysis of the procedure Compute-cumprobs is
very similar, and shows that it takes O(log N) parallel
time as well.

It must be noted that after executing the last two
procedures, the probabilities Pk and Qk are to be
sent to processor k, for each k = 0, 1, ..., N − 1. At
present, Pπ[k] and Qπ[π[k] are in processor k along with
Z[k]. Therefore, for all k, processor k sends Pπ[k] and
Qπ[π[k] to processor π[k]. That is, this communica-
tion step is just a permutation routing of π. If routed
using Valiant’s randomized routing algorithm, it will
take O(log N) communication time with overwhelm-
ing probability. Otherwise, π can be routed by bitonic
sorting of its destinations, taking O(log2 N) time.

In conclusion, the statistics gathering process takes
O(log2 N) parallel time for both communication and
computation. It remains to parallelize Phase II of
arithmetic coding.

Parallelization of Phase II: the Computation of
[L R]

It will be shown that the computation of the interval
[L R] is the product of N 2×2 matrices formed from the
probabilities Pk and Qk. Afterwards, we can use the
parallel operation Parmult to multiply the N matrices
in O(log N) time on N processors.

Let the updated values of L and R at iteration k
of the for-loop of Phase II be denoted Lk and Rk, re-
spectively. Clearly, Lk = Lk−1 + Pk(Rk−1 − Lk−1) =
(1 − Pk)Lk−1 + PkRk−1, and Rk = Lk + Qk(Rk−1 −
Lk−1) = (1−Pk)Lk−1 +PkRk−1 +Qk(Rk−1−Lk−1) =
(1−Pk −Qk)Lk−1 + (Pk + Qk)Rk−1. In summary, we
have

Lk = (1− Pk)Lk−1 + PkRk−1,

Rk = (1− Pk −Qk)Lk−1 + (Pk + Qk)Rk−1. (1)

Letting

Xk =
[

Lk

Rk

]
, Ak =

[
1− Pk Pk

1− Pk −Qk Pk + Qk

]
,

(2)
equation 1 becomes a simple vector recurrence relation
of order 1:

Xk = AkXk−1. (3)

The last equation implies that the last subinterval
[L R] = [LN−1 RN−1] that is being sought, which cor-
responds to XN−1, is

XN−1 = AN−1AN−2 · · ·A0X−1,

or equivalently,
[

LN−1

RN−1

]
= AN−1AN−2 · · ·A0

[
L−1

R−1

]
. (4)

Since X−1 = [L−1 R−1]t = [0 1]t, it follows that
[LN−1 RN−1]t is the right column of the product ma-
trix AN−1AN−2 · · ·A0. That product is clearly com-
putable with the parallel operation Parmult(AN−1:0),
taking O(N/P +log P ) matrix multiplications on P (≤
N) processors. Noting that the matrices are 2 × 2,

each matrix multiplication takes O(1) time on a single
processor, and therefore, the computation of the final
interval [L R] in Phase II takes O(log N) parallel time
on N processors.

At this point, the parallel algorithm for arithmetic
coding can be put together as follows.

Algorithm Par-arithm-coding(in: x[0 : N − 1]; out: B)
begin

Form the array Y [0 : N − 1] of tuples;
Parsort(Y ; Z, π);
Compute-probs(Z, π; Qk’s, Pk,x[k]’s);
Compute-cumprobs(Z, π, Qk’s, Pk,x[k]’s; Pk’s);
Route π to send Pπ[k] and Qπ[k] to processor k, ∀ k;
for k = 0 to N − 1 pardo

Ak =
[

1− Pk Pk

1− Pk −Qk Pk + Qk

]
;

endfor
C =Parmult(AN−1:0);
L = C(1, 2); R = C(2, 2);
r = d− logn(R− L)e;
Take the n-ary representation of L = 0.L1L2...;
B = [L1 L2 ... Lr];

end

Time of the whole algorithm: Based on the preced-
ing time analyses, the overall parallel time of the algo-
rithm is O(log2 N) on an N -processor hypercube. In-
deed, the parallel sorting is what dominates the time,
for otherwise, the algorithm takes O(log N) time.
Arithmetic Decoding

Arithmetic decoding, which reconstructs the string
(or x) from the stream B, is much harder to paral-
lelize. It works as follows, assuming the probabilities
are available for simplicity. The interval [L R] is nar-
rowed down progressively as in coding, where the ini-
tial value is [0 1]. The final interval, call it [Lf , Rf ], is
known at decoding time from the bit stream: D = nr

where r is the length of the stream B, Lf = (stream B
as an n-ary number)/nr, and Rf = Lf + D. To figure
out the next symbol in the file, using the next n-ary
digit B[i] in the stream B, the current interval [L R]
is divided into n subintervals as in coding, one subin-
terval per alphabet symbol; afterwards, decode B[i] as
alphabet symbol aj if [Lf Rf ] is contained within the
j-th subinterval. Thus, the recurrence relation for the
decoded symbols involves essentially positional rather
than numerical computations, making it hard to par-
allelize its computation.

In practice, however, arithmetic coding is applied in
a way that allows for some decoding parallelism. Be-
cause of accuracy problems, if the input string size N
is fairly large, the intermediary intervals [L R] become
too small for the precision afforded by most comput-
ers. Therefore, long input files are broken into several
substrings of acceptable lengths; those substrings are
arithmetic-coded independently, except perhaps in the
statistics gathering, which involves the whole file to
reduce the probability model information overhead to
be included in the header of the stream B. Accord-
ingly, the streams of those substrings can be decoded
independently in parallel. The actual details are not
included here, and will vary from application to appli-
cation, although the principle is the same.



4 Parallel Run-Length Encod-
ing

Run-length encoding (RLE) [16] applies with good per-
formance when the input string x[0 : N−1] consists of a
relatively short sequence of runs (say r runs, r << N),
where a run is a substring of consecutive symbols of
equal value. RLE converts x into a sequence of pairs
(L0, V0), (L1, V1), ... , (Lr−1, Vr−1), where Li is the
length of the i-th run, and Vi is the value of the recur-
ring symbol of that run.

Often, there is redundancy in the values of the Li’s
and the Vi’s. In that case, Huffman coding [4] is ap-
plied to code the Li’s and/or the Vi’s. Parallelizing
Huffman coding is the subject of the next section.
However, in the parallel RLE algorithm, we will put
the data in the right form and location, and will gather
the necessary statistics needed for Huffman coding.

The parallel RLE algorithm coincides with the first 3
steps of the algorithm ’Compute-probs’ that was devel-
oped earlier for arithmetic coding. The segments there
correspond to runs in RLE. After those steps execute,
each right barrier of a segment has the L and V of its
run. Afterwards, the scattered (L, V ) pairs should be
gathered to the first r processors in the system, in case
further processing is needed, as for example Huffman
coding the Li’s and the Vi’s. The parallel algorithm
for RLE can now be given as follows.

Algorithm Par-RLE(in: x[0 : N − 1]; out: L, V )
begin
1. Put a left-barrier at k = 0 of x, and a right-barrier

at k = N − 1;
2. for k = 0 to N − 2 pardo
3. if x[k] 6= x[k + 1] then

put a left-barrier at k and a right-
barrier at k + 1;

endfor

4. Let g[0 : N − 1] be an integer array where every
term is initialized to 1;

5. G[0 : N − 1]=Barrier-Parprefix(g);
/* if k is a right-barrier, G[k] is the length of the
corresponding run */

6. Let h[0 : N − 1] be an array initialized to 0;
7. for k = 0 to N − 1 pardo
8. if k is a right-barrier, set h[k] = 1;

endfor
9. H[0 : N − 1]=Barrier-Parprefix(h);

/* when k is a right-barrier and i = H[k]− 1, the
corresponding run is the i-th run of x*/

10. for k = 0 to N − 1 pardo
11. if k is a right-barrier then
12. i = H[k]− 1; Li = G[k]; Vi = x[k];
13. Processor k sends (Li, Vi) to processor i;

endif
endfor

end

Time Analysis of Par-RLE
The systems is assumed to be an N -processor hyper-
cube. Steps 1-3 for barrier setting take O(1) parallel

time. Steps 4-5 take O(log N) parallel time. Steps 6-8
take O(1) parallel time, and step 9, being Barrier-
Parprefix like step 5, takes O(log N) parallel. The
computation in steps 10-12 takes O(1) parallel time,
while the communication in those steps, which is es-
sentially a partial-permutation routing, takes O(log N)
time using Valiant’s randomized routing algorithm.
Therefore, the whole algorithm takes O(log N) parallel
time.

Parallel Run-length Decoding
It remains to parallelize run-length decoding (RLD). It
is reasonable to start from the Li’s and Vi’s as input,
where Li and Vi are in processor i, for i = 0, 1, ..., r−1.
The RLD algorithm is supposed to reconstruct the
original string x, where the first L0 symbols are all
V0, the next L1 symbols are all V1, and so on. The
algorithm must determine the start location and end
location of each run i. Clearly, the first run start at lo-
cation 0, the second run at location L0, the next run at
location L0 +L1, and so on. In other terms, for all i =
1, 2, ..., r−1, run i starts at location L0+L1+...+Li−1,
and ends at location L0 +L1 + ...+Li−1 +Li−1, while
run 0 starts at 0 and ends at L0− 1. This dictates the
use of Parprefix to compute all those prefix sums of L
in O(log r) parallel time on r processors. Afterwards,
for i = 1, 2, ..., r − 1, processor i must send (Li, Vi) to
processor L0+L1+ ...+Li−1; the sending of those r−1
message is a partial-permutation routing that takes
O(log N) time on the hypercube. Finally, those recipi-
ents (processors) of the (Li, Vi)’s, including processor 0
which has (L0, V0), broadcast in parallel their value Vi

to the next Li processors. Those r broadcasts are inde-
pendent and run in nonoverlapping parts of the hyper-
cube, thus taking O(max({log Li}) = O(log N) com-
munication time. This complete the decoding, which
clearly takes on the whole O(log N) parallel time.

5 Parallel Huffman Coding

In Huffman coding the individual symbols of the al-
phabet are coded in binary using the frequencies (or
probabilities) of occurrences of the symbols, such that
no symbol code is the prefix of another symbol code.
Afterwards, the input file (or string x[0 : N − 1]) is
coded by replacing each symbol x[i] by its code.

The Huffman coding algorithm for coding the al-
phabet is a greedy algorithm and works as follows.
Suppose that the alphabet is {a0, a1, ..., an−1}, and let
pi be the probability of occurrence of symbol ai, for
i = 0, 1, ..., n − 1. A Huffman binary tree is built by
the algorithm. First, a node is created for each al-
phabet symbol; afterwards, the algorithm repeatedly
selects two unparented nodes of smallest probabilities,
creates a new parent node for them, and makes the
probability of the new node to be the sum of the prob-
abilities of its two children. Once the root is created,
the edges of the tree are labeled, left edges with 0, right
edges with 1. Finally, each symbol is coded with the bi-
nary sequence that labels the path from the root to the
leaf node of that symbol. By creating a min-heap for
the original leaves (according to the probabilities), the
repeated insertions and deletions on the heap will take



O(n log n) time. The labeling of the tree and extrac-
tions of the leaf codes take O(n) time. Therefore, the
whole algorithm for alphabet coding takes O(n log n)
time. Considering that the alphabet tends to be very
small in size, and independent of the — much larger
— size of the input files to be coded, O(n log n) is rel-
atively very small.

This process of computing the probabilities pi’s is
parallelizable as was done in the previous two sections:
sort the input string in parallel using Parsort, then
use Barrier-Parprefix to compute the frequencies of
the distinct symbols in the input string. Those fre-
quencies are then divided by N to obtain the probabil-
ities, although this step is unnecessary since Huffman
coding would give the same results if it uses frequen-
cies instead of probabilities. The statistics gathering
process clearly takes O(log2 N) parallel time.

Once the symbol codes have been determined, each
symbol x[i] is replaced by its code, and all symbols are
so processed in parallel. The concatenation of all the
symbol codes is the output bitstream. This code re-
placement process takes O(1) parallel time, since the
length of each symbol code is ≤ n and is thus a con-
stant. In summary, the total time of Huffman coding
an input file of N symbols is O(n log n + log2 N).

Huffman decoding works as follows, assuming that
the Huffman tree is available. The bitstream is scanned
from left to right. When a bit is scanned, we traverse
the Huffman tree one step down, left if the bit is 0,
right if the bit is 1. Once a leaf is encountered, the
scanned substring that led from the root to the leaf
is replaced (decoded) by the symbol of that leaf. The
process is repeated by resetting the traversal to start
from the root, while the scanning continues from where
it left off. Clearly, this decoding process is very hard
to parallelize, and it may be inherently sequential. No
attempt is made here to prove that.

One approach can be followed to bring some paral-
lelism into Huffman decoding. In many applications
and compression standards such as JPEG, MPEG2,
and the upcoming MPEG4, the data is divided into
blocks at some stage in the compression process, and
the blocks are then quantized then entropy-coded in-
dependently of one another. The bitstreams of those
blocks are then concatenated into a single bit stream
according to some static ordering scheme of the blocks.
A special End-of-Block (EOB) symbol is added to the
alphabet and entropy-coded like other symbols; the
EOB symbol tells the decoder when a block ends and
the next begins. If parallelization is needed, the bit-
streams of the various blocks should NOT be concate-
nated into one single stream. Rather, they should be
formed into as many separate streams as there are pro-
cessors to be used for decoding. That way, the separate
streams can be decoded independently in parallel. By
attempting to the many streams to be of roughly equal
length, the decoding processes could be load balanced,
leading to nearly optimal parallel decoding. The de-
tails of that approach, and the actual structure of the
file that contains the separate bitstreams, are left to
future work.

6 Conclusions

In this paper we developed parallel algorithms for sev-
eral widely used entropy coding techniques, namely,
arithmetic coding, run-length encoding, and Huffman
coding. In all three, the coding turned out to be par-
allelizable, taking mainly O(log N) time on N proces-
sors, except in the cases where sorting was used for
statistics gathering, requiring O(log2 N) time. Decod-
ing, however, turned out to be much harder to par-
allelize, except in the RLE case which is logarithmic
in time. In practice, However, both arithmetic and
Huffman coding are used in such a way that allows for
simple parallel decoding.

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi, “An
O(nlogn) Sorting Network,” Combinatorica, 3,
pp. 1–19, 1983.

[2] K. E. Batcher, “Sorting Networks and their Ap-
plications,” 1968 Spring Joint Comput. Conf.,
AFIPS Conf. Vol. 32, Washington, D.C.: Thomp-
son, 1968, pp. 307–314.

[3] Blelloch, G. E., “Scans as Primitive Parallel Op-
erations,” IEEE Trans. Comput., C-38(11),pp.
1526–1538, Nov. 1989.

[4] D. A. Huffman, “A Method for the Construction
of Minimum Redundancy Codes,” Proc. IREa,
Vol. 40, pp. 1098–1101, 1962.

[5] “ISO-13818-2: Generic Coding of Moving Pictures
and Associated Audio (MPEG-2).”

[6] P. M. Kogge and H. S. Stone, “A parallel algo-
rithm for the efficient solution of a general class
of recurrence equations,” IEEE Trans. Comput.,
C-22, No. 8, pp. 786–793, Aug. 1973.

[7] C. P. Kruskal, L. Rudolph and M. Snir, “The
power of parallel prefix,” IEEE Trans. Comput.’
Vol. 34, pp. 965–968, 1985.

[8] R. E. Ladner and M. J. Fischer, “Parallel prefix
Computation,” Journal of ACM Vol. 27, pp. 831–
838, 1980.

[9] S. Lakshmivarahan, C. M. Yang, and S. K.
Dhall, “Optimal Parallel Prefix Circuits with
(Size+Depth)=2n − n and dlog ne ≤ depth ≤
d2 log ne − 3,” Proceedings International Confer-
ence on Parallel Processing, pp. 58–65, Aug. 1987.

[10] J. B. O’Neal, Jr. “Differential Pulse-Code Mod-
ulation (DPCM) with Entropy Coding,” IEEE
Trans. Inform. Theory, IT-21, No. 2, pp. 169–174,
March 1976.



[11] B. Pennebaker and J. L. Mitchell, JPEG Still Im-
age Data Compression Standard, Van Nostrand
Reinhold, New York, 1993.

[12] M. Rhodes, J. F. Quinn, and J. Silvester, “Locally
Optimal Run-Length Compression Applied to CT
Images,” IEEE Trans. Med. Imag., MI-4, No. 2,
pp. 84–90, 1985.

[13] J. Rissanen and G. Langdon, “Arithmetic Cod-
ing,” IBM J. Res. Develop. 23, pp. 149–162,
March 1979. Also in IEEE Trans. Comm. COM-
29, No. 6, pp. 858–867, June 1981.

[14] K. Sayood, Introduction to Data Compression,
Morgan Kauffmann Publishers, San Fransisco,
California, 1996.

[15] J. W. Schwartz and R. C. Barker, “Bit-Plane En-
coding: A Technique for Source Coding,” IEEE
Trans. Aerospace Electron. Syst., AES-2, No. 4,
pp. 385–392, July 1966.

[16] H. Tanaka and A. Leon-Garcia, “Efficient Run-
Length Encoding,” IEEE Trans. Info. Theory, IT-
28, No. 6, pp. 880–890, 1987.

[17] L. G. Valiant, “A Scheme for Fast Parallel Com-
munication,” SIAM J. Comput., Vol. 11, No. 2,
pp. 350–361, May 1982.

[18] J. W. Woods and S. D. O’Neal, “Subband Cod-
ing of Images,” IEEE Trans. Acous. Speech Signal
processing, ASSP-34, No. 5, pp. 1278–1288, 1986.

[19] J. Ziv and A. Lempel, “Compression of Individ-
ual Sequences via Variable Rate Coding,” IEEE
Trans. Info. Theory, IT-24, pp. 530–536, 1978.


