Parallel Computation of Autocorrelation Matrices
on a Limited Number of Processors

S.R. Subramanya
Department of Electrical Engineering and Computer Science,
The George Washington University,
Washington, DC 20052.

{subra, youssef }@seas.gwu.edu

Abstract

Autocorrelation matrices are used heavily in several
- areas including signal and image processing, where par-
allel and application-specific architectures are also being
increasingly employed. Therefore, an efficient scheme to
compute autocorrelation matrices on parallel architectures
has considerable benefits.

In this paper, a paralle! algorithm for the computation
of autocorrelation matrices on a limited number of pro-
cessors (compared to the matrix size) is presented. The
computational requirements for the elements of the auto-
correlation matrices are highly skewed and the proposed
algorithm gives a scheme for even distribution of the com-
putation load among the processors, resulting in better
utilization of the processors and minimization of computa-
tion time. The algorithm is developed for an architecture
used in several existing computers.

1 Introduction

The computation of the autocorrelation matrix is
central to several applications including signal and im-
age processing. For example, it is used for the compu-
tation of the coefficients of the ARMA (autoregressive
moving average) model, used for modeling stationary
signals [4]. Non-stationary signals are sometimes ap-
proximated by considering windows of the signal and
modeling the signal windows as a stationary signal
with suitable parameters.

Given a matrix X = (z; ;)o<i,j<N-1, the autocorre-
lation matrix is given by 4 = (ar1)ocki<N-1, where,

1 N-1-kN-1-l
WEWIRWD) Xy g Tk

The computation requirements of the autocorrela-
tion matrix elements is highly skewed - A[0,0] takes
N? multiplications and N2 - 1 additions, while 4[N —

380

Abdou Youssef

1, N — 1] takes just 1 multiplication and ng
and the number of steps required for the r.
elements is something in between. In a paralle]
rithm, if the computation of each A[i, j] is assigned ¢,
every processor (in the case N2 processors are avai.
able), or if the matrix is partitioned and assigned 4,
processors in a straight-forward manner (when lesg
than N? processors are available), then it resys N
a high imbalance of load on the processors, Tesulting
in poor utilization of processors and increaseq compy.
tation time.

addition,

S

In [1], an algorithm for the computation of the ay,
correlation matrix on 2-D meshes was presented, which
had load-balancing embedded in the algorithm, anq it
was shown that the algorithm therein had a speedup of
twice over a straight-forward algorithm and was withiy
twice of the (trivial) lowerbound (optimal). The algo-
rithm proposed in [2] for 2-D meshes achieves the op-
timal time for the matrix computation phase, using an
offline algorithm to evenly distribute work among the
processors in the mesh. Both the algorithms assume
the availability of a 2-D mesh of size N x N equal to
the size of the matrix, which could be restrictive. For
example, even if the matrix is 100 x 100, the number
of PEs required in the mesh is 10,000 which may not
be feasible with current technologies.

In this paper, this restriction is relaxed and an al-
gorithm is developed for the computation of the auto-
correlation matrix on a limited number of processors,
P:1< P < N2 Generally P <« N2.

The next section describes the architecture and
gives a lowerbound on the matrix computation and the
assumptions of the algorithm. Section 3 describes the
proposed algorithm and the simulation results. Con-
clusions are presented in Section 4.

ﬁ

idition,
el algo.
gned to
€ avajl.
Ined to
en less
sults ip
Sulting
Compu-

1e ad,

l, which
» and it
edup of
i within
1€ algo-
the op-
sing an
ong the
assume
qual to
ve. For
aumber
aay not

1 an al-
e auto-
cessors,

ire and
and the
bes the

c -

i
3.

1

2 Architecture, Computation Require-
ments and Assumptions

2.1 Architecture

The proposed algorithm assumes the availability of
a host computer to which a mesh of processing elements
(PEs) is connected by a bi-directional communication
link. This architecture is exemplified by several exist-
ing machines such as Intel Touchstone Delta, Paragon,
and Ametek Series 2010.

The host is responsible for the following functions:
(1) Receiving (or generating) the input matrix X, (2)
Transmitting the matrix X to the PEs, (3) Partition-
ing the work among the PEs, and (4) Receiving the re-
sults of computation from the PEs and placing them
appropriately in the resulting matrix A.- The actual
computation of the autocorrelation matrix is done by
the mesh of PEs.

Each PE in the mesh has a very simple structure -
a small local memory and basic computation functions
such as add and multiply. It also has a router which
handles very basic communication functions such as
send and receive, (to and from the directly connected
neighbors). The computations and communications in
the mesh can be done concurrently. This is similar to
the architecture described in [3].

2.2 Computation
lowerbound

requirements and

The computation of A[k,] requires the multiplica-
tion of the corresponding elements of two rectangular
blocks of elements in X, of height (V — k) and width
(N - 1), one with its top-left corner at (k,!) and the
other with its top-left corner at (0,0), and the subse-
quent addition of those product terms. This entails
(N — k)(N - 1) multiplications and (N — k)}(N -1) -1
additions, for a total work of 2(N —k)(N ~1) —1. The
computation requirement of two arbitrary elements is
pictorially shown in Figure 1 below.

(1] Matrix X N-1

0

Figure 1: Computation requirements of two arbitrary Alk,1)s

The total work (multiplication and addition

381

steps) required to compute the whole matrix is:
N SRS RN RV 1) -1] = 2 [Ny,
Assuming P PEs are available and all PEs are busy
in computation, the average work load per processor
is: f(fﬂ;’—“—)’- —N2) / Pl.
The above quantity is a trivial lower bound on the

matrix computation, and is denoted as the balanced
load, Wg in our algorithm.

2.3 Assumptions

The matrix size in each dimension, N, is assumed
to be even (the odd case is handled easily by a slight
modlﬁcatlon) The number of PEs P is such that 2 <

P< [MJ Note that P is at least 2, for otherwise,
it reduces to the simple uniprocessor case. P is at

most]_-—N"’—lﬁj to ensure that the work done by a PE

is always more than the work required to compute any

[k l. For P > [w-ﬂl—], the algorithm proposed
in [2] could be used thh slight modifications.

The physical topology of the P PEs is assumed to
be a 2-D mesh of dimensions n x m such that the
perimeter 2(n + m) is minimum for a given P (it is
‘tightest’ possible rectangle). (Note that the topology
is a linear chain if P is prime.) In the algorithms, the
PEs are indexed by p € {0...P — 1}. The indices in
the individual dimensions (i,7),0<i<n,0<j <m,
of the mesh can easily be derived from p.

In the determination of the computation and com-
munication time, an arithmetic operation (add and
multiply), and communication function (send and re-
ceive), each is assumed to take one step.

3 The Proposed Algorithm
In this section, we first give a brief overall descrip-

tion of the proposed algorithm, followed by the com-
plexity analysis, and the performance evaluated by

simulation.

3.1 Brief description of the algorithm

There are four main phases in the algorithm, which
are described in the following subsections.

3.1.1 Distribution of elements of X by the
host to the PEs

We assume that the whole matrix X is sent in a
pipelined fashion from the host to one of the PEs and
from there it is broadcast to all the other PEs in the
mesh. This is shown to take (n+m+ N2 - 2) steps [2].

PHEI9S 1 ted i 4o oml ok
H

@IEI

Work areas for the PEs

are shown.
Load for cach PE i5 632 . : :]
Case 1. -

.........

Case 2.

Figure 2: Distribution of work for 8 x 8§ matrix among PEs for cases 1 and 2

3.1.2 Work partitioning among PEs by the
host

This phase is executed by the host offfine (and just
once) for any given N and P (similar to the compila-
tion of programs; thereafter, the matrix computation
can be carried out any number of times). Based on
the matrix size N and the number of PEs in the mesh
P, the host partitions the work among the PEs in the
mesh in a balanced way. We distinguish three “work
cases’ as given below:

case Value of P
1 | Pis adivisor of 5.
2 P is a divisor of —ﬁi.
3 P is other than in cases 1 and 2.

Based on the work case, the host determines the work
required to be done by each PE and creates a tuple W
containing the work description. The host then forms
a message V = (case, W), where case is the ‘work
case’ and sends to the PE.

Work cases 1 and 2
For cases 1 and 2, the work is partitioned among the

PEs in a perfectly balanced way, with each PE do-
ing exactly Wg amount of work. In these two cases,
the work description tuples W for the PEs are empty,
since, based on the knowledge of just N and P, each
PE can independently determine the elements of A
that it should compute. Figure 2 describes the work
areas for the PEs to compute an 8 x 8 matrix for cases
1 and 2, with 4 and 16 PEs respectively. The numbers
in the grid represent the amount of work required to
compute the element in that position of the autocor-
relation matrix.

382

Work case 3

For case 3, the work description tuple for a PE, W -

(il,jl,wl,ig,jz,W2,f> states that the PE needs to
do:

(1) W1 amount of (possibly partial) work toward tpe
computation of Aliy, j1),

(2) Complete computation of elements Afi;, j; + 1
etc., upto the element before Aliz, 2], and

(3) W, amount of (possibly partial) work toward the
computation of Afiz, ja].

The possible scenarios for W, and W> are showy
in Fig. 3. For the computation of an element, say
Ali1, 71], the complete rectangles in the figure repre.
sent the sub-rectangles in the matrix X with height
(N — ;) and width (N — j;) with the top-left corner
at (41, 1), whose elements need to be multiplied with
the corresponding elements of a similar sub-rectangle
with the top-left corner at (0,0), and all those prog-
uct terms to be added. The shaded areas represent the
‘work areas’ which indicate that only elements in that
region of the sub-rectangle are used in the computa-
tion of the element by a PE. In case W; is only part of
the computation done by a PE, say PE(p), then the
partial result is sent to PE(p — 1), where it is added
to the partial result of its W5, to obtain the element
of A. This is handled by setting the flag f in W.

i wi w2 i wi 7 w2 wi i w2 / wi WI-

Figure 3: Scenarios for W, and W, for a particular PE

LN

The work partitions for case 3, to compute a matrix
of size 8 x 8 and with 12 PEs organized as a mesh of
size 4 x 3 are shown in Fig. 4 and the work description
tuples for the PEs are tabulated in Table 1.

—

o

trix
h of
biorg

e —————————

.........

Arcas of X worked on and the amounts
of work dooc by the PEs are shown

Case 3.

Figure 4: Distribution of work for 8 x 8 matrix among
12 PEs for case 3

PE w'——(ihjlvw’lvizv.‘l?,“&v,f}
0 1 10,0,127,6,1,84, F)
1 | (0,1,27,0,4,10,T)
2 {0,4,53,1,0,65,T)
3 | (1,0,46,1,2,68,T)
4 | (1,2,15,1,7,4,T)
5 | (1,7,9,2,2,24,T)
6 | (2,2,47,2,6,23,T)
7 | (2,7.11,3,2, 52, F)
8 | (3,2,7.4,0,59,T)
9 | (4,0,4,4,6,12,T)
10 | (4,6,3,5,6,9,T)

11 | (5,6,2,7,7,1,T)

Table 1: Work description tuples for case 3 to compute
8 x 8 matrix using 12 PEs

After the host partitions the work among the PEs,
the tuples of work descriptions are sent to the PEs.
The tuple for every PE describes exactly what ele-
ments of A to compute (which areas of the X matrix

to work on). Then the actual computation proceeds. .

3.1.3 Computation of elements of A by the
PEs

During the matrix computation phase, the actual com-
putation of the terms required for the elements of the
autocorrelation matrix A are computed. Before the
start of this phase, each PE would have received V
which contains the case and the tuple W which con-
tains the complete work description (what elements
to compute) for the PE. In this phase, all the PEs do
their work independently and concurrently. There is
at most one communication required by a PE in case
W is a partial computation (as described in Sec. 3.1.2)
to send the partial result to its predecessor, at the end
of computation. -

3.1.4 Gathering of elements of 4 (result) by
the host from the PEs

The algorithm assumes that, after a PE finishes com-
puting all the elements that it is required to com-
pute, it sends the list of results R to the host.

R = {[(¢1,51)],e1,.--,en} is an ordered list, where
e1,...,ey are the elements of 4 computed by the PE.
The positions of €;,...,e, in A is determined by the

host based on the knowledge of the work case and the
PE from which R was received. Only in the third case,
(i1, 1) at the header of R denotes the row and column
of the first element in the list (in cases 1 and 2, it is
empty).

Note that if N? items are to be sent from the mesh
to the host, and if every PE has at least one item, then
the transfer of all the N? items can be done in N2
time steps, using pipelining [2]. The host receives R
from each PE then places the results in the appropriate
positions in the A matrix.

The PEs could also send the results to the host as
and when they finish the computation of an element
and then proceed with the computation of the next
one. By suitable scheduling of the communication of
these results, the communication and computation can
be overlapped and the overall time could be reduced.
This, however, is not addressed in this paper.

3.2 Pseudocode of the proposed algo-
rithm

The detailed pseudocode of the proposed algorithm
is given in [2], in a top-down fashion. The upper lev-
els enable easy comprehension of the overall scheme
and the lower levels facilitate easy implementation of
the algorithm in software and/or hardware. Only the
topmost level is presented here.

Algorithm 3.1
CoMPUTEAUTOCORRMATRIX
(in: X, N, P, out: A)
1. begin
{Concurrently Do 2, 3, and 4}
2. BROADCAST X_TOMESH(X, N). {by host}
3. INIT_W_MATRIX(w, N). {by mesh of PEs}
4 DETERMINEWORKFORPES(X, N, P). {Host]
{endDo}
5. DoCOMPUTATION(X, N, P, V). {by Mesh}
6. GATHERRESULTS. {Done by host}
7. end

Complexity analysis: Each of the steps above has
been completely described and analyzed in [2]. Steps
2, 3, and 4 take n + m + N? - 2, N2, and O(N?)

time. Note that step 4 of the algorithm is done offline of processors (compared to the matrix size) wag

and just once, for any gi\;en value of V' and P. Steps sented. Although the computati.on requirementsp;e‘
Nl e [(l‘Q_+L - _\72) /P] and N? steps. the elements of the autocorr'elatxon matrix g high(l)r.
respectively. skewed, the proposed algorithm evenly diStribute"s

the computation load among the Processors, regy,

ing in better utilization of the processors anq ... -
mization of computation time. The algorithm v
veloped based on the architecture of severa] ¢
machines. The computation and communicatig

3.3 Simulation results i
as de-

The proposed algorithm has been simulated by a C Xistip

program running on Sparcstation, for various values L . 100 cony.
of N (matrix size is N x N) and number of PEs, P pleglt;les w:erelai{al)'zed. l'fhe 'algo;lthmd was simulatey
to determine (1) the required communication steps, and the simulation Tesulls were lound to agree With

(2) time for partitioning work among the PEs, and (3)
the time for actual computation of the autocorrelation
matrix. The simulation results have been shown to
agree with the analytical results [2].

As noted in Sec. 3.1.2, for cases 1 and 2, the load on
all the PEs is perfectly balanced, with each PE doing
the same amount of work, Wg. However, in case 3, References
the last PE, PE(P — 1) does less than Wy work, with '
all the rest doing W amount of work. We define the [1] S.R.Subramanya. ‘A Parallel Algorithm with Empeg,
imbalance, T = —ﬁva:m‘--lOO, where W), is the work ded Loac} BIala’Llnc;ng for Autocor;el'flllo? Matflx Com-
done by PE(P 1) paen’, 1, Sympasiam o0 Porl i,
Note: The imbalance will be zero for cases 1 and Mt " ec. 1997.

2. Imbalance occurs only in case 3, and the worst- [2] S.R.Subramanya. ‘A Parallel Algorithm for Autocor.

- lation Matrix Computation on 2-D Meshes’, Techp,
case imbalance occurs when the number of processors, re . o Seim.
N+1)? cal Report, IIST, George Washington University, 1997

P = ||, (see [2)).

4) (3] Hwang, K. Advenced Computer Architectyre
A plot of the worst-case 7 against several values of McGraw-Hill, 1993, pp370-375.

N is shown in Fig. 5.
(4] Brockwell, P.J. and Davis, R.A. Time Series: Theory
and Methods, Springer-Verlag, 1991.

rithm presented in a top-down fashion in [2] facﬂitates
easy comprehension and also easy imPlementation in

i

2

|

|

analytical results. The pseudocode based on the algo. i
software and /or hardware. ‘
}

|

T

Maximum load imbalance (%)
-

L WAL YT Y

. s 2
[} 200 400 800 00 1000 1200 1400 1800 1800 2000
N (Matrix sze is N x N)

Figure 5: Worst-case imbalance

4 Conclusions

In this paper, a parallel algorithm for the compu-
tation of autocorrelation matrix on a limited number

384

