Parallel Algorithms for Indexing and Retrieval in Audio Databases

S.R. Subramanya

Abdou Youssef

Department of Electrical Engineering and Computer Science,
The George Washington University,
Washington, DC 20052.

Abstract

Recent explosion in the use of non-text, multime-
dis data such as audio, video, images, and graphics
necessitates the development and use of multimedia
databases. Efficient schemes for indexing and search-
ing in multimedia databases are essential for fast and
sophisticated data retrieval. The highly complex na-
ture of audio/visual query processing, and the vast
amounts of data in multimedia databases, require the
use of parallel algorithms for indexing and search-
ing to achieve the desired efficiency in data retrievals.

* Indeed, high-performance parallel processing systems
are beginning to be used as servers for multimedia
databases, alongside workstations and PCs with mul-
tiple processors, as clients. While some work has been
done on image and video databases, little attention
has been paid to audio databases. In this paper we de-
sign and analyze two parallel algorithms for searching
for audio data in audio/multimedia databases, using
a transform-based indexing scheme.

1 Introduction

The digital storage and processing of non-textual
data, such as video, audio, and images, commonly re-
ferred to as multimedia data has grown tremendously
in recent times and is expected to grow at the same
or faster rate in the coming years [6, 7, 11, 12, 13].
The huge sizes and complez nature of multimedia
data have rendered keyword-based queries and ez-
act searches used in traditional databases ineffective,
and have called for query-by-content(QBC), query-by-
ezample(QBE) and similarity searches [1].

A query-by-example in an audio database takes a
sound sample as the query and finds all files containing
an exact match or, more often than not, a close resem-
blance to the query sample. Applications include (1)
music “sound-likes” for music listeners, entertainment
professionals, and music experts; (2) music sound-likes
for detection of plagiarism and music copyright viola-

tions; (3) identification of explosion types by matching
the heard explosion sound against a database of known
recorded explosion sounds; (4) security applications
such as personal identification by matching a person’s
voice against a database of voices of authorized person-
nel; and (5) law enforcement such as criminal identi-
fication by matching a suspect’s phone-recorded voice
against a database of recorded voices.

The aforementioned applications of queries by ex-
ample in audio databases make it amply clear that we
need novel and efficient ways for indexing and similar-
ity searching in multimedia databases. Although there
have been several efforts toward the development of
databases of images |2, 3, 4, 5, 6, 7, 9, 10] and video
[11, 12, 13], not much attention has been given to au-
dio data [16, 14, 15]. Audio data could serve as an
independent data type or as part of multimedia data.

A transform-based indexing scheme and two se-
quential search algorithms for audio databases has
been proposed in another paper [15]. In this paper,
we design and analyze two parallel algorithms on a
PRAM model for similarity searching, based on the
transform-based indexing scheme. The analysis will

- show that the parallel algorithms are quite fast and

611

exhibit linear speedup.

2 Transform-based indexing

A transform-based indexing for audio data for use in
multimedia databases has been described in [15] and
only an outline is given in this section. The transform-
based indexing scheme offers several advantages such
as (1) insensitivity to both noise and varying sampling
rates, and (2) use of only a small number of transform
coefficients to characterize the data.

Our transform-based indexing approach can be out-
lined as follows. Each audio file or stream is divided
into small blocks of contiguous samples and a trans-
form like the Discrete Fourier Transform (DFT) or the
Discrete Cosine Transform (DCT) is applied to each

[—

block. This yields a set of coefficients in the frequency
domain. With a suitable transform, only a few signif-
icant coefficients are adequate to reconstruct a good
approximation of the original signal.

An index entry is created by selecting an appropri-
ate subset of the transform coefficients and retaining
a pointer to the original audio block. Thus, the index
occupies much less space than the data and allows for
faster searching. When a query by example is to be
processed, the query is similarly divided into blocks,
each is transformed, and a subset of transform coeffi-
cients is selected. This forms the pattern. Then, the
index data is searched for an occurrence of this pat-
tern within some measure of similarity. In this case,
two strings are considered matched if they are within
a small enough ‘distance’ of each other, where the dis-
tance is the root-mean-square-differerice of the signif-
icant transform coefficients. ;

It is to be noted that in our scheme described above,
the data and the query are divided into blocks, before
applying transforms because of the several advantages
offered by blocking such as the following: (1) When
transforms are applied to the whole signal, the trans-
form coefficients capture global averages but not the
the finer details. (2) Blocks of appropriate sizes would
contain samples which are highly intercorrelated, so
that when transforms are applied, there is more en-
ergy compaction and thus fewer transform coefficients

‘would adequately describe the data. (3) The trans-
forms on the individual blocks could be carried out in
parallel.

3 Sequential Search Algorithms and
their Analyses

Two sequential search algorithms developed for the
transform-based indexing - indez search schemes are
described and analyzed in [15]. These are briefly given
in this section to aid in the understanding of the par-
allel versions of these algorithms. The performance
of the sequential search algorithms are compared with
raw-data search, where samples of the given query are
compared against the data samples in the audio files.

The raw-data search is rather naive. It deter-
mines if there is a close match between the query
samples and any portion of the data. Specifi-
cally, let the query be Q@ = g,¢,- -gm and the
data be A = ajay---a,. A close match exists
if there is a sequence Qp410k42 *** Qk4m in A such
that /> .-, (ak+i — @)2 < &, where £ is some given
threshold.

612

In the index searches, the corresponding trans,
coeflicients of the query are compared with the Coef.
ficients of the data blocks which have been sel
and retained to serve as indices, and the Euclidegy,
distance between them is determined. If the distance
is below an experimentally determined threshold, it is
accepted as a match. The first of the two index search
schemes is called SimpleSearch. It assumes that the

query block boundaries are aligned with those of the.

data block boundaries. The other algorithm called R,.
bustSearch removes this restriction so that the query
blocks could be at any part of the data.)

In the following algorithms and their analysis, the
following notations are used:

L: The length of a block (Number of samples
in a block).
N, M: Number of blocks of the data and
the query, respectively.
k: Number of significant transform coefficients
per block, retained as index (for that block).
P: The number of Processing Elements (PEs).
@BC: Query Block Coefficients (The coeffi-

cients obtained after applying transform on
blocks of the query.

Data Block Coefficients (The k largest
coefficients obtained after applying
transform on blocks of the original data.
DBCL: Locations of the k largest Data Block
Coeflicients.

Reconstructed Block Coefficients.
Reconstructed Block Coefficient
Locations.

DBC:

RBC:
RBCL:

Note that each block of QBC contains L elements
and each block of DBC and DBCL contains k ele-
ments.. All logarithms used in the analysis are to base
2. In the algorithm descriptions, the phrase ‘matching
query blocks with data blocks’ refers to finding the
Euclidean distance between the selected coefficients
of data blocks (indices) and the corresponding coef-
ficients of query blocks.

3.1 Simple search algorithm

As mentioned earlier, it assumes that the query
block boundaries are aligned with those of the data
block boundaries.

The algorithm BLOCKDISTANCE determines the
Euclidean distance between the corresponding coef-
ficients of a block of query and the coefficients of a
block of data, and is used in all the following search
algorithms.

0 S e S

Elgorithm 3.1 BLOCKDISTANCE
(@BC, j,DBC,1)

{Block j of QBC is matched with block I of

DBC.}

1. begin

2. dist + 0;

8. fori=1tokdo

4. loc + DBCL[(l - 1)L +1];

5. ¢, + DBC[(l - 1)L +1);

6. c2 + QBC[(j = 1)L + loc];

7. dist + dist + (c; — c3)?;

8. endfor

9. return(sqrt(dist));

10. end
Algorithm 3.2 SIMPLESEARCH " (@BC,
DBC, DBCL)

1. begin

2. fori=1to N~ M do

3. dist + 0;

4. for j=1to M do

5. dist + dist+BLOCKDISTANCE

6. endfor

7 if (dist < Threshold)

8. Report ‘Match Found’ and
break from loop.

9. endif

10. endfor

11. Report ‘Match Not Found’.

12. end

3.2 Robust search algorithm

As mentioned earlier, the query blocks could be at
- any part of the data, not necessarily aligned with data
- block boundaries, and the the robust search algorithm
is capable of handling this. A brief description of the
algorithm is now given followed by the pseudocode.
Recall that L is the block length (number of samples
in a block), and M is the number of blocks in the
query.

Before matching all the query blocks with the data
blocks, only the first block of the query is matched
against successive data blocks to determine the po-
sition in the data block where the query is possibly
aligned. This is done by taking the inverse transform
of two successive data blocks (length 2L), and then by
considering a window of L samples and sliding it so
that the beginning of the window moves from the first
to the last sample of a block. At each step, a trans-

613

form of the window is taken and is matched against
the first block of the query. The place where the dis-
tance between the data and query block is minimum is
recorded, say r. If the minimum distance is less than
a suitable, empirically determined threshold, then the
position where it occurs is tentetaively accepted as a
possible position where the query matches the data.
Subsequently, the whole query is matched against the
data blocks, aligned at that position. This is done by
taking the inverse transform of M + 1 data blocks and
then by considering r as the beginning of a block and
taking the transform of M blocks, and then matching
these blocks with the query blocks. In case of a match,
it is reported; otherwise, the process repeats with the
next two consecutive blocks.

i,

Algorithm 3.3 ROBUSTSEARCH (QBC|1
M,1: L], DBC[1:N,1:k}, DBCL[1: N,1:k])
1. begin
- 2. n«1;
8 whilen<N-Mdo
4. Apply the inverse transform on DBC[n]
and DBC[n + 1] to get Ry, an
approzimation of the original signal
of length 2 blocks (2L samples).
for k=1to L do i
W =Transform(R[k: k + L - 1]).
Compute the Euclidean distance
between corresponding coefficients
of W and QBCI[1]. Save the minimum
distance so far in min_dist and the
posttion where it occurs in r.

8. endfor

9. if (min_dist < Threshold2)

(Accept tentatively).

10. Apply inverse transform on blocks
DBC[n:n+ M +1) to get Ry, an
approzrimation of the original signal,
of length M + 1 blocks. (Next align
Ry with the query where a tentative
match occurred).

11. Consider Rafr : v+ M - L] and divide
this into M blocks. Apply transform to
each of the blocks to get RBC[1 : M)
and RBCL[1: M].

= O O

12. dist + 0;

13. fori=1to M do

14. dist « dist+BLOCKDISTANCE

(QBC,i,DBC,n +1i - 1);

15. endfor

16. if (dist < Thresholdl)

17. Report ‘Match Found’ and
break from loop. '

18. elsen+«n+ M;

19. endif ‘

20. elsen «~n+1;

21. endif

22. endwhile

23. end

3.3 Analysis of sequential search algo-
rithms

The detailed analysis of the sequential simple search
and robust search algorithms are given in [15] and
are summarized below. The time complexity of the
simple search algorithm is ~ O(ML log L + NMk),
and its speedup over raw-data search, S; is ~ L? /k.

~ The time complexity of the robust search algoriths, o
. = O((N - M)(L? log L)])\;Mand its speedup over ray,.

614

data search, Sy is & WN=M)log L

4 Parallel Search Algorithms and thejy
Analyses -

In this section, we design two parallel query match. -
ing schemes, based on the sequential SIMPLE SEARCH
algorithm. We then analyze the time complexities of
the parallel algorithms and determine their speedups
over the sequential version.

We assume a PRAM-CREW (Parallel Random
Access Memory- Concurrent Read Exclusive Write)
model. In this model (described in [17]), a set of p
processing elements (PEs) are connected to a shared
memory through an interconnection network. Any
memory location can be accessed for write by only one
PE at any time. However, several PEs could read
one memory location concurrently, and can write to
different locations concurrently. Note that in PRAM-
EREW (Exclusive Read Exclusive Write), the only
difference is that a memory location can be read by
only one PE at a time. If several PE’s need to
read the same location, as many copies of that loca-
tion will have to be made in logarithmic time. To
make our algorithms implementable on both models,
we will indicate which variable(s) will be copied and
into how many copies. In the time analysis, this copy-
ing (or broadcasting) is assumed to take constant time
in CREW but logarithmic time in EREW.

4.1 Parallel Simple Search Algorithm

The SIMPLESEARCH algorithm can be parallelized
in several ways, each leading to different speedup. For
the sake of brevity, we present the parallel scheme that
exhibits linear speedup.

In that scheme, each PE has its own copy of the
query coefficients (QBC') (or all can read concurrently
from a single copy). All the PEs act in parallel, with
each PE trying to match in sequence, the blocks of
the query coefficients with the data block coefficients,
shifted appropriately, as shown in Figure 1. Note also
that the PEs read blocks of DBC concurrently, which
is allowed in the CREW model.

£

Figure 1: Parallel simple search: Each PE works on the whole query. The figure shows two successive
stages in the matching process. .'

Algorithm 4.1 PARALLELQBESEARCH (in: Algorithm 4.3 PARALLELSIMPLESEARCH1
Q, DBC, DBCL) (@BC, DBC, DBCL)
1. begin 1. begin
2. PARALLELTRANSFORMQUERY(Q, QBC). 2. forn=1to [¥5L] do
3. Make P copies of QBC so that each 3. for i =1 to P pardo
PE; has its local copy of QBC. PE; (does):
¢ 4. PARALLELSIMPLESEARCH1 ' 4. dist[i] + 0;
- (QBC, DBC, DBCL). 5. for j=1to M do
{ Or PARALLELSIMPLESEARCH2 6. le(n-1P+i+j—~1;
(QBC, DBC, DBCL).} 7. distls) « dist[i]+
{ Or PARALLELROBUSTSEARCH BLOCKDISTANCE(QBC, j, DBC,1);
(QBC, DBC, DBCL).} 8. endfor
5. end 9. if dist(z) < Threshold)
10. Report ‘Match Found’ and exit.
Algorithm 4.2 1. endif
PARALLELTRANSFORMQUERY (Q, QBC) 1257, endior
1. begin : 13. endfor
2. fori=1to P pardo 14. Report ‘Match Not Found’.
3. Assign blocks (i — 1)[M) +1 to i[%] to 15. end
PE; to perform DCT on each block;
4. endfor 4.1.1 Analysis of the Parallel Simple Search
5. end Algorithm

We analyze the time complexity on the CREW
model and determine the speedup. DCT applica-
tion on each block of the query of size L takes
O(L log L) time. Since each PE transforms [%—]
blocks, the time for PARALLELTRANSFORMQUERY is
[#1L log L. Step 7 of PARALLELSIMPLESEARCH1
takes O(k) time, and the for-loop of steps 5-8 thus
takes O(Mk) time. Therefore, the whole PARALLEL-
SIMPLESEARCHI takes O([ﬂgﬁl MEk). Consequently,
the total time of the PARALLELQBESEARCH algo-

615

..............

Stage 2
PR Al Ty --,---,- ,-m---'_--".

DBC
Stage 3

QBC

DBC

Stage 4

QBC | Co0 s ety o '.m?’\ — .".".'!)
PE, PE, PE,

Figure 2: Parallel simple search on EREW model. Each PE works on the whole query. Figure shows
four successive stages in the matching process.

rithm is:
| Algorithm 4.4 PARALLELSIMPLESEARCH2
(@BC, DBC, DBCL)

f’..m-.k \

O(f—']L log L‘*‘f]Mk) 1. begin

2. forn=1to [#]do
The speedup of the PARALLELQBESEARCH algo- f fo; ;;—_:(; a‘;:)_P pardo
f:hm over the sequential SIMPLESEARCH algorithm 5 for j = 1to M do
) 6. le(n-1)P+i+j;
O(ML log L + NMk — M?k) 7. dist[i] + dist[i]+ BLOCKDISTANCE
O(T%1L log L + [Mk) (QBC,j,DBC,1).

8. endfor
9. endfor

which is clearly a linear speedup: {Check if there is any match }

: : 10. for i =1 to P pardo
Speedup = O(P). 11. if (dist[i] < Threshold)
12. found[i] « TRUE;

4.2 Parallel Simple Search Algorithm on bt endif

4. endfor
EREW model 15. match « AND;<i<p(found]i)),

using reduction.

We describe an alternate parallel search algorithm 16. if (match = TRUE)
on an EREW model. In this algorithm, P copies of 17. Report ‘Match Found’ and
the query coefficients (QBC) are made and each copy break from loop.
is treated as local to each of the PEs. All the PEs act 18. endif
in parallel, with each PE trying to match the blocks 19. endfor
of the whole query with the data block coefficients, 20. Report ‘Match Not Found’.
“hifted appropriately, as shown in Figure 2. 21. end

616

Sy

4.3 Analysis of Parallel Simple Search Al-
gorithm on EREW model

Making P copies of QBC takes O(ML log P) time,
using broadcast. (Note that QBC is of size ML ele-
ments). DCT application on each block of the query
of size L takes O(L log L) time. Since this is done
in parallel | %—] times, the time for PARALLELTRANS-
FORMQUERY is [#1L log L.

BLOCKDISTANCE takes O(k) time. Since this is
called within the for loop M times, the time for this
for loop of steps 5-9 is O(Mk). The parallel loop of
steps 3-10 also takes O(Mk) time. Steps 11-15 take
O(1) time. Step 16 takes O(P) time, the time for the

parallel reduction operation. So, within the outer for -

loop from 2-20, each iteration takes O(Mk + log P)
and the loop is iterated H‘}] times. So, the time for
the search is: O([¥1(Mk + log P)).

Taking into account the time for the initial trans-
form of the query and the copying of query coeffi-
cients, the total time of the PARALLELQBESEARCH
algorithm using PARALLELSIMPLESEARCH2 is:

O(r%u log L)+O(ML log P)+0(r%1 (Mk+log P)) .

The speedup of the PARALLELQBESEARCH algo-
rithm using PARALLELSIMPLESEARCH2, over the se-
quential SIMPLESEARCH algorithm is:

O(ML log L + NMk — M?k)

O([41L log L) + O(ML log P) + O([%1(Mk + log P))

4.4 Parallel Robust Search Algorithm

As mentioned in Section 3.2, the simple search
algorithms require that the query blocks be aligned
with the data blocks for correct retrievals. This lim-
itation is overcome by the robust algorithm. Refer
to the description of the sequential robust search al-
gorithm given in Section 3.2. In the parallel ver-
sion of the robust search algorithm, we assume that
P = MAX(L,M). Recall that P is the number of
PEs, L is the block length, and M is the number of
blocks in the query. Generally, L > M.

617

Algorithm 4.5 . PARALLELROBUSTSEARCH
(@BC, DBC, DBCL)

1.

2.
3.
4

Rl

11.
12.
18.

14
15.

16.
17.
18.

19.
20.

21.
22.

23.
24.
25.
26.
27,
28.

begin
n+1;
while n < N - M do
Apply the inverse transform on blocks n
and n+ 1 of DBC in parallel to get R,
an approzimation of the original signal
of length 2 blocks (2L samples).
Make L copies Ry; (1<i<L)ofR,
and the first blk of QBC, using broadcast.
for i =1 to L pardo
W; « Transform(Ryfi : i + L — 1]).
difi] +BLOCK DISTANCE
(@BC,1,W;, 1);
{Compute the Euclidean distance
between corresponding coefficients
of W; and local copy of QBC{1}}
endfor
min.dist «+ MIN<i<1(dl[i]); {Using
Parallel Reduction}. Record the value
of i where the minimum occurs, in r.
if (min_dist < Threshold2)
(Accept tentatively).
fori=1to M + 1 pardo
PE; (does):
Apply inverse transform on block
n+1i—1 of DBC to get R2;, an
approz. of the original signal block.
endfor
Align R2 = CONCAT]SiSM.H (Rzi)
with the query where a tentative match
occurred to get R,. Divide the aligned
R, into M blocks, R);, 1<i< M.
for i =1 to M pardo
PE; (does): -
Apply transform to block R, to get
RBC; and RBCL,..
d2[i] +- BLOCKDISTANCE
(@BC,i,RBC,i);
endfor
“dist + ADD]SiSM(d2[i]);
{Using Parallel Reduction.}
if (dist < Thresholdl)
Report ‘Match Found’ and
break from loop.
elsen+—n+ M,
endif
elsen —~n+1;
endif
endwhile
end

o~

4.4.1 Analysis of the Parallel Robust Search

Algorlthm

We analyze the time complexity on the CREW model
and determine the speedup. The following table gives
the complexities of different logical units of the a.lgo-
rithm.

Steps -

Steps Time Time
46 O(LlogL) 8-11 O(LlogL+k)
12 O(log L) 14-16 O(Llog L)
17 o(1) 18-21 O(L log L + k)

22 O(log M)

As in the sequential case, there are three cases
and the worst case occurs when there is no tenta-
tive match. The time time in this case would be:
(N — M)O(L log L + k). Taking into account the
O(L log L) time for transforming the query in par-
allel, the total time complexity for the algorithm is
(still): (N —M)O(L log L+ k). So, the speedup Srpt
over the sequential version is:

_ O(ML log L) + (N — M) - O(L? log L + Lk)
= (N ~ M)O(L log L + k)

Generally, £ <« L log L. So, the speedup is:

+L+

~ O(—7) = O(L).

M
N-M
Note that we have assumed P = MAX(L, M). Since

(generally), L > M, the speedup is O(P), which is
linear.

5 _Conclusions and Future directions

A transform-based indexing scheme and sequen-
tial algorithms for searching for audio data in au-
dio/multimedia databases were proposed in [15] and
shown to be quite effective. This paper proposed and
analyzed parallel versions of the search algorithms and
showed that they have linear speedup. This effective-
ness, and the efficient parallel algorithms for searching
presented in this paper, make our indexing and search-
ing schemes quite attractive for audio databases.

Our future work include the implementation and -

testing of the algorithms on actual parallel client-
server systems, and extending our techniques to other
types of multimedia data such as images and videos.

618

References

[1] Narasimhalu, A D. ed. Special issue on content-bageq
retrieval. ACM Multimedia systems, Vol. 3, No. 1, Feb
1995.

[2] Alexandrov, A.D. et.al. Adaptive filtering and index.
ing for image databases. SPIE, Vol. 2420, pp. 12.29.

[3] Chang, S-K. ‘Image Information Systems’,
IEEE, Vol. 73, No. 4, April 1995, pp 754-764.

' [4] D’Allegrand, M. Handbook of image storage and re.
trieval-systems. Van Nostrand Reinhold, New York,
1992.

[5] Gong, Y., et.al. ‘An Image Database System with
Content Capturing and Fast Image Indexing Abil;.
ties', Proc. Int’l Conf. on Multimedia Computing and
Systcms, 1994, pp121-130.

[6] Grosky, W. and Mehrotra, R. eds. Special issue op
image database management. JEEE Computer, Vol.
22, No. 12, Dec 1989.

[7] Gudivada, V. and Raghavan, V. Special issue on
content-based image retrieval systems. JEEE Com.-
puter, Sept. 1995, Vol. 28, No. 9.

[8] Idris, F. and Panchanathan, S. ‘Storage and Retrieval
of Compressed Images’, JEEE Trans. on Consumer
Electronics, Aug. 1995, pp937-941.

(9] Jain, R. et. al Similarity measures for image
databases. SPIE, Vol. 2420, pp. 58-61.

[10] Petrakis, E.G.M. and Faloutsos, C. ‘Similarity Search-
ing in Large Image Databases’, UMD Technical Re-
port.

[11] La Casia, M. and Ardizzone, E. ‘Jacob: Just A
Content-based Query System for Video Databases’,
IEEE Multimedia Conf., 1996 pp 1216-1219.

{12] Hampapur, A., et. al. ‘Digital Video Segmentation’,
ACM Multimedia 94 Conf. Proc., pp 357-364.

[13} Smoliar, S.W. and Zhang, H.J. ‘Content Based Video
Indexing and Retrieval’, IEEE Multimedia, Summer
1994, pp62-72.

[14] Ghias, A. et. al. Query by hummmg Proc. ACM Mul-
timedia Conf., 1995.

[15) Subramanya, S.R. et. al. ‘Transform-Based Indexing
of Audio Data for Multimedia Databases’, IEEE Int’l
Conference on Multimedia Systems, Ottawa, June
1997.

[16] Wold, E. et al. Content-based classification, search
and retrieval of audio data. JEEE Multimedia Maga-
zine, 1996.

[17] Quinn, M.J. Parallel Computing - Theory and Prac-
tice, McGraw-Hill, 1994.

Proc,

