On-line Communication on Circuit-Switched Fixed Routing Meshes

Abdou Youssef
Department of EECS
The George Washington University
Washington, D.C. 20052
youssef@gwusun.gwu.edu

Abstract. This paper addresses routing on the
circuit-switched fixed routing n X n mesh M,, where
paths follow the row-column rule. The paper
presents first a self-routing algorithm that schedules
any BPC permutation in O(log N) time (N = n?)
to run in n routing steps on M,,, and another self-
routing algorithm that schedules in constant time
any Q- or Q'-realizable permutation to run in 2n
routing steps on M,,. Finally, the paper shows that
broadcasting and fan-in communication self-route
in log N routing steps, that parallel prefix requires
log” N routing steps, and that FFT requires O(n)
routing steps. In all but the FFT case, the circuit-
switched mesh delivers better performance than its
packet-switched counterpart.

Index Terms: Circuit Switching, Distributed
Routing. Fixed Routing Rule, Mesh.

1 Introduction

The circuit-switched fixed routing model is increas-
ingly becoming the dominant communication model
for parallel computer systems. In this model, even if
the network topology provides more than one path
between pairs of nodes, the routing algorithm must
follow a fixed path for every pair of nodes. The path
is predetermined at manufacturing time according
to some routing rule. We will refer to this routing
model as the fized routing model, and to the rule
whereby the fixed path is selected as the fized rout-
ing rule. An example of fixed routing rules is the
mesh row-column rule which forces the path to first
go row-wise to the column of the destination, and
then go column-wise to the desired destination.

When routing in the fixed routing model, path
conflicts often occur and cause communication over-
head. There are three sources of communication
overhead, namely, link conflict, node conflict, and
path length. Bokhari has shown through exten-
sive experimentation on hypercubes that the im-
pact of node conflict and path length is negligeable

in circuit-switched fixed routing systems, while tle
impact of link contention is the most dominant [1].
Therefore, this paper will assume throughout that
communication overhead is due only to link con-
tention.

To minimize the communication overhead when
routing a permutation (or other patterns), the per-
mutation has to be scheduled. Scheduling a per-
mutation consists of partitioning the set of nodes
into m subsets E,, E,, ..., E,, for some m, such
that for every : = 1,2,...,m, the paths originat-
ing from the nodes in E; do not conflict over links,
that is, they can be established simultaneously and
their corresponding messages delivered in paral-
lel. E; represents the set of source nodes that
can send data to their destinations at time step i,
t = 1,2,...,m. Optimal scheduling is the process
of finding a partition of minimum size m, and the
partition is called an optimal schedule.

The focus of this paper is efficient scheduling of
permutations and other important communication
patterns on the row-column fixed routing mesh.

Most of the research efforts on permutation
scheduling in graph networks have assumed packet
switching (2], [4], [62, [9]. Permutation scheduling
on circuit-switched fixed routing networks is new.

This paper will develop three efficient self-routing
algorithms for each of the three important classes of
bit-permute-complement (BPC) permutations [5],
{1-realizable permutations, and Q~!-realizable per-
mutations [3]. The mesh is n X n, where n is a power
of 2. The BPC self-routing algorithm determines a
schedule of size n for each BPC permutation. The
structure of the algorithm can be summarized as
follows. When routing a BPC permutation, every
node determines in O(log N) time the time step at
which it is supposed to send its data to its destina-
tion. Afterwards, at every time step i, i = 1,..., n,
each node whose precomputed time step is equal
to 1 sends its data. Thus, the algorithm spends
O(log N) time to compute the schedule and n time
steps to do the actual routing.

390

0-8186-2672-0/92 $03.00 © 1992 IEEE

[Pr—



The two algorithms for the 2 and Q! permuta-
tions route each permutation in two phases, where
each phase requires n time steps. A small constant
time is spent by the nodes to figure out the time
step at which they should send their data. Thus,
these two algorithms spend O(1) time to schedule
and 2n time steps to do the actual routing.

In addition to BPC and (£, Q~!)-realizable per-
mutations, this paper will address the mesh rout-
ing of common communication patterns: fan-out
(i.e., broadcasting), fan-in (required by semi-group
computations), and other patterns arising in divide-
and-conquer algorithms such as parallel prefix and
FFT. It will be shown that the fan-out and fan-
in patterns can be done in optimal log V routing
steps, that parallel prefix runs in O(log? N) time,
and that FFT runs in O(n) time.

This paper is organized as follows. The next sec-
tion discusses some preliminary concepts. In Sec-
tion 3 the self-routing algorithm for BPC permu-
tations is developed. Section 4 presents the two
self-routing algorithms for the Q permutations and
the Q~! permutations. Section 5 treats the mesh
routing of the communication patterns that arise in
certain parallel computations. Concluding remarks
are presented in Section 6.

2 Preliminaries

Thronghut the paper let n = 2k and N = n?. Let
also M, denote the n x n row-column fixed rout-
ing mesh. The nodes of M, are labelled row-wise
0 through N — 1. Every node r is expressed in bi-
nary as rog_i...r12o. Clearly, Zok—1...Zk41Z is the
binary label of the row of z, and Ty_;...71Z¢ is the
binarv label of the column of z.

Let © be a permutation of {0,1,...2k — 1}
and @ = agk_q...a;ap be a binary number. A
BPC permutation fr, [5] is a permutation of
{0.1.....N — 1} characterized by 7 and a such
that fro(Tok—1---T120) = (Tr(2k-1)--Tr(1)Tx(0)) B A
where 3 is the bit-wise exclusive or.

For every binary string Z,_j..z1Zo and ev-
erv subset 4 C {0,1....,m — 1}, we denote by
[#m_1...7170}4 the string derived by selecting from
Tp—1...2120 the bits whose positions are elements
of A. The relative order of the selected bits is the
samie as in the original string. For example,if m = 8
and 4 = {1,4.3.7}, then [27..21270}4 = T724237;.
A useful alternative notation for [T,—y...Z1Z0)4 iS
(2,);e4 which does not require the bits z;, j & A,
to be defined.

391

3 Self-Routing of BPC

Let fr. be a BPC permutation to be routed on
M,. Our permutation scheduling algorithm will
find a schedule of n time steps such that at ev-
ery time step exactly one node from each row will
send and exactly one node in each column will
receive. This one-source-per-row one-destination-
per-column (1R-1C) criterion eliminates link con-
flict because link conflict between any two source-
destination paths might occur only if the two .
sources are in the same row or the two destinations
are in the same column.

The problem of routing fr is then to identify
for each time step t one source from each row such
that the (1R-1C) criterion holds. To achieve self-
routedness, each node z should itself compute the
time step t(z) (0 < t(z) < n—1) at which z sends to
fra(z). The distributed method by which node z
computes t(z) should satisfy the (1R-1C) criterion.

To be able to compute t(z) in a distributed fash-
jon, an algebraic formula for t(z) will be derived
and certain fundamental properties will be identi-
fied and addressed. To that effect, let

F={r(i)]0<i<k-1&k<n(i)<2k-1}
F={n(i)| k<i<2k-1& k<n(i) <2k~ 1}
Fi'={r(i) | k<i<2%-1&0<n(i)<k-1}
G={i|0<i<k-1&k<m(i)<2k-1}
G'={i|0<i<k-1&0<m(i)<k-1}.

Clearly, FUF' = {k,k+1,..,2k- 1}, GUG' =
{0,1,....k=1}, FUF" = {x(k),m(k+1),...,7(2k -
1)}, and W(Gg = F, where n(G) = {r(1) | 1 € G}.
In particular, |F|+|F'| = |G|+|G'| = |F"|+|F'| =
k. Also |G| = |7(G)| = |F|, concluding that |G'| =
|F'| and |F| = |F"|.

Let (z;);er and (di)icc be two strings. All
the rows of labels ¥ok—1...Yk+1¥& such that
[y2k—1--Ye+1¥k]F = (2;);eF are said to form a row
group denoted RG((z;);er). In other terms, the la-
bels of the rows in a Tow group agree in all the bit
positions determined by the set F. Each row group
has 2¥=1F1 rows. Similarly, all the columns of labels
Zp—1...2120 such that [zk_1..2120)¢ = (d;)iec are
said to form a column group denoted CG((d;)iec)-
This column group has 2k=1Gl = 2k=IFl columns.
There are 2!F! disjoint row groups and 2lF1 disjoint
column groups in M.

The following theorem proves that when routing
fr.a» there corresponds to each row group a column
group such that the flow of data will be from each



row group to its corresponding column group.

Theorem 1 Assume that fr, is to be routed on
M.,. Let (z;);cr be an arbitrary string and (d‘,),‘ec
be another string such that for all i € G, d; =
Zri) @ ai. Then the destination of every node of
the row group RG((z;);er) is @ node of the col-
umn group CG((d;)icc). More precisely, each row
of RG((x;)jer) has 2\Fl destinations in each of the
26=1F1 columas of CG((di)iec)-

Proof: Consider a row Y2k=1Yit1 Yk
in RG((z;));eF, that is, (y;);er = (zj)jer. Let
Y2k=1---YkVk—1.--YV1%Y0 be a noée in that row. We
need to show that its destination z is in the column
group CG((di)ieg). Note that 2z = 2zp,_;...29 =

SralY2k-1...90) = (Yr(2k=1)--Yr(0)) B a.

For every i € G we have 7(i) € F (because m(G) =
F) and

Yr(i) B @
Zr(;)  a; (because for all j € F, y; = z;)
d; (by definition of the string (d;)icq)

It

Consequently. the destination z is in the column
group CG((d, ).ec).

Consider next an arbitrary row Y2k—1---Yk+1Yk iD
RG((z;);eF) and an arbitrary column Zk-1-..2120 1N
C'G((di)iec). The sources yy_y - YkYk-1..-Yo whose
destinations are in column Zk—-1...232¢g must sat-
isfv the equality (Ur(k=1)---¥r(0)) D (@k-1...a0) =
Zk—1..-Zo, Which holds if and only if Yr(i) B @i = 2
for all i € G’ (because for all i € G, z is already
known to equal Y=(i) B a;). Therefore, the number
of these sources is 2¥=1G'1 = 2IG| = 9lFI. Thus, each
row of RG((z,),er) has 2!F| destinations in each of
the 25~IFl columns of CG((d)ieg). O

Now we are in a position to give an alegraic for-
mula that computes for every mesh node z the time
step t(z) at which node z should send its data to
its destination. We will give the formula first then
show that it satisfies the 1R-1C criterion.

For every mesh node z, t(z) is defined to be:

) = ([z]p & [fral(2)]er) o [z]p
where e is the string concatenation operator.
Note that [f;.(z)]g is the string (d;);ec where

fr.n(l) = d2k—l--‘d]d0‘

Theorem 2 Let z and y be two distinct sources in
the mesh M, such that t(z) = t(y). Then both z
and y belong to two distinct rows and their desti-
nations frq(z) and fr4(y) belong to two distinct
columns.

Proof: If z and y belong to two distinct row
groups, then their destinations belong to two dis-
tinct column groups. In particular, z and y belong
to two distinct rows and their destinations belong
to two-distinct columns. : '

Assume then that z and y belong to the same row
group. We will show that in this case [z]p # [y]p
and Ff,,a(a:)]gl # [fr,a(¥)le'. This will be done by
showing that the opposite implies that z = y. To
this effect, assume that

[z]F = [y]p or [fra(2)e = (fra(®)]e. (1)

Since t(z; = t(y), it follows that ([z]r @
[ ]

[f?r,a(:c)]_G’ [z] P = (ylr & [fra(®)lc) o ylFm,
which yields that

[z]F @ [fra(D)er = [Y]F & [fra(¥))e (2)
and

[z]Fr = [y]Fw. (3)
(1) and (2) imply that

[z]F = [y]F (4)
and

[fvr,a(x)]G" = [fﬂ',a(y)]G" (5)

The fact that z and y are in the same row group
implies that their destinations are in the same col-
umn group (after Theorem 1), that is,

[fra(2)lc = [fra(¥)lG- (6)

(3) and (4) imply that Try = Yp) for
all 7 = kk + 1,...,2k — 1 because F' U
F" = {x(k),x(k + 1),...,7(2k — 1)}. Therefore,
Tr(2k=~1)-Tr(k+1)Tn(k) = Yr(2k=1)-Yn(k+1)Yr(k) and
hence

Tr(2k-1)Tr(k+1)Tn(k) P Q2k-1...0k410% =
Yrn(2k=1)--Yn(k+1)¥n(k) D Q2k—1...Qk410k.

Thus, the & most significant bits of both fralT)
and fr4(y) are identical, implying that the nodes
fra(z) and fro(y) are in the same row.

Also, (5) and (6) imply that [[ra(D)]oug =

[fra(¥)Gus, that is, frq(z) and fra(y) are in the
same column because G U G’ = {0,1,....k - 1}.
We now have that both f,.(z) and f,4(y) are in
the same row and the same column. Therefore,

392



fra(z) = fraly). This yields that z = y, which
is the desired contradiction.

Consequently, [z]m # [y]p and [fra(2)ler #
[fra(¥)]cr. Since F' C {k,k+1,...,2k—-1},it follows
that 2ok—1...2k # Y2k-1..-Yk, that is, z and y are in
different rows. Similarly, since G’ C {0,1,...,k—1},
it follows that fr,(z) and fxq(y) are in different
columns. O

The previous theorem leads to this distributed
permutation scheduling algorithm:

SELF-SCHEDULE-BPC(r,a)
begin
/* every node is assumed to have = and a */
1.for z=0to N -1 pardo/* scheduling */
node z computes F', G’ and F”, and then
t(z):= ([z]F @ [fra(2)]c) @ [2]Fr;
endfor
2.fort=0ton~-1do /* actual routing */
forall node z pardo
ift(z) =t then
node z sends to node fr ()
at time step {;
endif
endforall
endfor
end

Time complezity: Computing F', G', F" and t(z)
takes O(k) = O(log N) time. Thus step (1.) takes
O(log N') time. The inner forall-loop in step (2.)
takes a constant time; therefore, step (2.) takes
n time steps. Thus, the algorithm takes O(log N)
time to schedule and n time steps to do the actual
routing without link conflict.

As an illustration, consider again the example
permutation fr, of Figure 1-(a) wheren =4, k =
2,a=1010and 7(0) =1, (1) =3, n(2) = 2, and
m(3) = 0. That is, fr.(T3222120) = Z0T22327 B
1010 = Tga,T3xy, where Z; is the complement of
z;. In this example, F' = {3}, F' = {2}, F" = {0},
G = {1}, G’ = {0}, and for every = = r3752;2¢
we have: [z]p: =z, [z]F» = z0. and [fw.a(z)]G’ =
dy = 2,0 @ a = 71 ©0 = 21. Consequently,
Ha) = ([e]p & [fralz)le) o [z]pn = (22 @ 21) @ 20.

hus.

t(0000) = 00, #(0001) = 01, #(0010) =
10, £(0011) = 11
t(0100) = 10, #0101) = 11, t(0110) =

00. 1(0111) = 01

393

£(1000) = 00, #(1001) = 01, #(1010) =
10, ¢(1011) = 11
$(1100) = 10, #(1101) = 11, #(1110) =

00, $(1111) = 01.

Hence, the source-destination paths that will be es-
tablished at time t = 00,01,10,11 are:

t = 00: 0000 — 1010,0110 — 1111, 1000 — 1000
and 1110 — 1101

t = 01: 0001 — 0010, 0111 — 0111, 1061 - 0000
and 1111 — 0101 .

t = 10: 06010 — 1011,0100 — 1110, 1010 — 1001
and 1100 — 1100

t = 11: 0011 — 0011, 0101 — 0110, 1011 — 0001
and 1101 — 0100. .

Figure 1-(b,c,d,e) shows these paths at each time
t. Observe that at any time step ¢ the sources be-
long to distinct rows, their destinations belong to
distinct columns, and the source-destination paths
do not conflict over links.

4 Self-Routing of Q- and Q°!-
Realizable Permutations

The Omega (§2) network and its inverse Q! re-
alize many interesting, widely used permutations
[3]. Therefore, efficient algorithms that self-route

the  permutations and the 27! permutations on
the fixed routing mesh M,, are of great importance.
This section will develop a simple, self-routing algo-
rithm for the © permutations and another similar
algorithm for the Q™! permutations. Again n is as-
sumed to be a power of 2, n = 2%, The Omega
network under consideration has N input (and out-
put) terminals, where N = n? so that M, and
Omega are of the same size.

The algorithm for the 2 permutations is based on
the idea that every Q0 permutation f is routable on
the mesh M, in two phases: A column-wise phase
followed by a row-wise phase. In the column-wise
phase, every node z sends its message to the node
that is in the same column of z and the same row
of f(z). In the row-wise phase, every node sends
to the final destination the message received in the
column-wise phase. The algorithm for the Q™! per-
mutations works in the opposite order: The row-
wise phase is first and the column-wise phase is
second. Therefore, we will elaborate the first al-
gorithm only.



For every column Zk~1...To, define the mapping
9ri_,..zo Such that

9zpy.zo(T2km1...20) = dok—1...dkzp_y...7¢

where f(zg5_;...2¢) = dak-1...do. Using the charac-
terization of (2-realizable permutations derived by
Lawrie in [3], it can be shown that 9z4_,..z, IS a per-
mutation of size n for all Tk-1...Zo. Define also, for
every row dax_....dy, the mapping hdﬂ:—l-'-dk such
that

hdgk_l...dk(de—l'--dkzk—l-‘-1'0) = dok-y...dp

where dy;_;...dy is the destination of some unique
node zg4_;..7¢ in column ZTk-1...Zo. Again, ev-
ery hg, _,..4, can be shown to be a permutation
of size n. The column-wise phase consists of simul-
taneous routing of all the 9z4_;...zo 1D their corre-
sponding columns. After this phase, every node is
holding a single (intermediary) message. The row-
wise phase consists of simultaneous routing of all
the hdye_y..d, in their corresponding rows, where
the data routed are the intermediary messages. It
should be clear that after executing the column-wise
phase and then the row-wise phase, the messages
are in their appropriate destinations.

The specifics of each phase are discussed next. In
each phase, the communication consists of routing n
separate permutations over n separate linear arrays.
One simple approach is to sequentially route each
permutation in its linear array in n time steps, that
5.1 step 7 only the i-th node of the linear array
sends its message to its (intermediate or final) des-
tination in the same array. This is done first in the
column-phase in all the columns simultaneously (in
7 time steps), then it is done in the row-wise phase
i all the rows simultaneously, again in n time steps,
making the total number of steps equal to 2n. The
code below summarizes this self-routing algorithm.

SELF-ROUTE-Q(f)

begin
1. forall node T2k-1...29 pardo
2. node ry4_y...z¢ computes its

intermediary destinatjon
(igk_]...dkzk-,...:co using its
destination f(IQk-]...Io) = dok—q...dp;
endforall
/* the column-wise phase next */
. forall column Zi-1...7g pardo
for 295 1.2, = 0..0 to 1...1do
node T2k-1.--TkTk-1...Tg sends
[its message, the final destination)

LI S

to its intermediary destination;
endfor
endforall
/* the row-phase next */
6. forall row d2k-1...d; pardo
7. for z4_1...20 = 0...0 to l1..1do
8. node dokei..dpzi_y...7¢
sends its received message
to the destination stored
in the header of that message;
endfor
endforall
end

Note that step (1.) is the only step that can be
called a scheduling step. Because step (2.) takes
a small constant time and step (1.) is a parallel
step, the scheduling step (1.) takes a small con-
stant time. Step (4.) takes n time steps, and thus
step (3.) takes n time steps due to the parallelism
involved. Similarly, step (6.) takes n time steps.
Therefore, as indicated earlier, this algorithm takes
a constant time for scheduling and 2n steps for the
actual routing.

5 Self-Routing of other Com-
mon Communication Patterns

Several communication patterns, other than single
permutations, are very common and deserve special
attention. These include fan-out communication
(i.e., broadcasting), fan-in communication required
in certain applications such as semi-group compu-
tations (e.g., addition of N numbers), and commu-
nication patterns in divide-and-conquer parallel al-
gorithms. This section will address the routing of
these patterns on the fixed routing mesh M,,.

5.1 Broadcasting

Broadcasting in a linear array of n nodes is ex-
plained first. Broadcasting in meshes follows as
a two-phase process of row-wise broadcasting fol-
lowed by column-wise broadcasting.

Suppose that a node z is to broadcast a message
to all the nodes in a linear array L, of n nodes.
The broadcasting is, at least conceptually, a recur-
sive process. In the basis step, node r sends its
message to some arbitrarily selected node 2’ such

394




P

'
t
{
i
4
'

that z and z’ occupy two separate halves of L.
For example, if z < |}], then 2’ = n — 1; other-
wise, ' = 0. In the resursive step, r broadcasts
in its half of L,, and z’ broadcasts in its own half
(i.e., the other half) of L,, where these two sub-
broadcasts are done simulataneoulsy since they do
not conflict with one another over links. The num-
ber C(n) of routing steps needed to carry out this
process satisfies: C(n) = C(3) + 1. The term 1 in
the right hand side represents the single time step
needed by the basis step ¢ — z’. From this recur-
rence relation it follows that C(n) = logn.

To broadcast from a node z in M,,, a linear array
broadcast is first conducted in the row of z. Then, n
simultaneous linear array broadcasts are conducted
in the columns, where the broadcasting node in each
column is the node at the intersection with the row
of . The number of routing steps of this process is
logn + logn, which is log N.

This broadcasting is faster than broadcasting on
packet-switched n X n meshes because the latter
brodcasting requires 2n — 1 steps. This exhibits an
area of superiority of circuit-switched meshes over
their packet-switched counterparts.

5.2 Fan-in Communication

Fan-in communication arises in semi-group compu-
tations which involve evaluting a term of the form
Ag * Ay * ... * Ay_1, where * is an associative op-
erator and every term A; is stored in processor :.
For example, » can be ‘addition’, ‘multiplication’,
boolean ‘and’. etc.

The fan-in communication pattern required in
this problem is simply the opposite pattern of
broadcasting. Therefore, it can be done in a self-
routing fashion in log N routing steps using the
mirror-image process of broadcasting.

5.3 Divide-and Conquer Communica-

tion

We will consider the subclass of divide-and-conquer
algorithms which split their input into two equal
halves, then call themselves recursively on each half,
and finally merge the 2 subsolutions. The recursion
can be a conceptual one while the actual implemen-
tation can be iterative. Whether we adopt the top-
down recursive approach or the bottom-up iterative
approach. the communication requirements are the
same. However, for ease of analysis, the recursive
formulation is adopted.

395

Assume that the input size is N = n? and that
every processor stores one of the input items. Let
C(N) denote the number of routing steps required
by such algorithms. One way to execute these al-
gorithms is:

1) Do the splitting such that the resulting two
halves of the data reside in the top 5 rows and
the bottom 3 rows of M,. Let Ciplitting denote the
number of routing steps needed to do the splitting.

2) Call the algorithm recursively on each half. Each

call executes on its 7 rows. The two calls execute

independently and simultaneously, costing C(-z"i)
routing steps.

3) Merge the two subsolutions into the final solu-
tion. Let Crerging be the number of routing steps
required by the merging.

C(N) satisfies then the {following relation:
C(N)= C(’—;’-) + Cplitting + Crmerging- In particular,
if the splitting and merging take a constant number
of routing steps (as in semi-group computations),
then C(N) is O(log N). If the splitting and merg-
ing take O(log N ) routing steps (as in parallel prefix
below where broadcasting is needed), then C(N) =
O(log? N). If the splitting and merging take a con-
stant number of permutations (as in many cases
such as FFT), then C(N) = C(%’-) + cn for some
constant c¢. This yields that C(N) = C(n) + ¢'n
for some constant ¢/. C(n) represents the number
of routing steps of each call when the recursion has
reached the level where the calls are to execute on
single rows. Since routing a permutation of size n
on a linear array of n nodes can be done sequen-
tially in n routing steps, it follows that C(n) sat-
isfies the relation C(n) = C(%) + n. Therefore,
C(n) = 2n — 2. This leads to C(N) = O(n).

We will now apply this divide-and-conquer frame-
work to parallel prefix and FFT. In the case of
parallel prefix, the input is an array A[0..N — 1],
and the desired output is also an array of N terms
Ap.0, A():l, ceey Ao N-1, where Api = A[O] * A[l] * ... %
Ali] and * is an associative operator. Processor 1
stores input A[i] and is charged to compute Ag;.
Define A;.; = A[j]* A[j + 1] *...x Aff] forall j <.
In the recursive formulation, the first recursive call
is on the subarray A[0..5 — 1] and results in the
output Ag.o, A0y .oy AOz_QQ_l. The second recursive

call is on the subarray A[Z..N — 1] and results in
the output Ay n, AN . N_ 1,..., AN n_;- By noting
202 2°2 +1 2 N-1
that Ag,; = Ag.n_, + Ax; forall ¢ > %‘, it can be
2 v,
seen that the merging step requires every node in



the second half of the mesh to receive AO=¥_1 from

node %’- — 1. Thus, the communicating part of the
merging is a broadcast and takes log N steps. Since
the splitting was trivial and required no routing, the
relation for C(N)is C(N) = C(4) + log N. Mak-
ing use of the fact that C(2) = 1, we derive that

C(N) = log? N. This is slower than the optimal
case by only a factor of log N, but it is much faster
than O(n) which is required by the same algorithm
if the communication model is packet switching.

In the case of recursive FFT, a close inspection
of the standard FFT recursive algorithm [SF shows
that the splitting part and the mrging part require
one BPC permutation each. The splitting BPC
maps Iok_1ZT2k-2-..Z¢ tO Tak—_1Z2k-2...To, and the
merging BPC is the perfect shuffle. It follows that
C(N) = O(n) as indicated earlier.

The above applications and analysis show that if
the splitting and merging require constant or loga-
rithmic numbers of routing steps on the fixed rout-
ing mesh, then the communication complexity is
an order of magnitude faster on the circuit-switched
mesh than on the packet-switch mesh. On the other
hand. if the splitting and merging require data per-
muting, then no significant improvement is achieved
by circuit switching.

6 Conclusions

This paper developed self-routing algorithms to
schedule interesting classes of permutations on
the circuit-switched fixed routing n x n mesh of
N = n? nodes. It was shown that the bit-
permute-complement permutations can be sched-
uled in O(log N) time to route in n time steps,
and that the Q- and Q~!-realizable permutations
can be scheduled in constant time to route in 2n
time steps. Other important communication pat-
terns were also addressed. Broadcasting and fan-in
communication were shown to self-route in log N
routing steps, parallel prefix was shown to require
log® N routing steps, and FFT was seen to require
O(n) routing steps.

In all but the case of FFT, the circuit-switched
fixed routing mesh performed better than its
packet-switched counterpart. It is true that in the
case of permutation routing, the packet-switched
mesh takes O(n) steps. However, the delay incurred
by the multiple hops that each message has to un-
dergo to reach its destination contributes a signif-
icant constant factor to the communication delay
in packet-switched meshes. This makes the n-step

circuit-switched routing a more attractive alterna-
tive.

References

[1] S. H. Bokhari, “Communication Overheads on
the Intel iPSC-2 Hypercube,” ICASE Interim
Report 10, May 1990.

[2] A. Gottlieb and C. P. Kruskal, “Complexity
Results for Permuting Data and Other Com-
putations on Parallel Processors,” Journal of
the ACM, Vol. 31, No. 2, pp. 193-209, April
1984.

(3] D. K. Lawrie, “Access and Alignment of Data
in an Array Processor,” IEEE Trans. Comput.,
C-24, pp. 1145-155, Dec. 1975.

[4] D. Nassimi ans S. Sahni, “An Optimal Routing
Algorithm for Mesh-Connected Parallel Com-
puters,” J. ACM, vol. 27, No. 1, pp. 6-29, Jan.
1980.

[5] D. Nassimi ans S. Sahni, “A Self-Routing
Benes Network and Parallel Permutation Al-
gorithms,” IEEE Trans. Comput., C-30, pp.
332-340, May 1981.

[6] C. S. Raghavendra and V. K. Prasanna Ku-
mar, “Permutations on Illiac IV-Type Net-
works,” IEEE Trans. Comput., Vol. C-35, No.
7, pp. 662-669, July 1986.

(7] C. Seitz et al. “The Architecture and Pro-
gramming of the Ametek Series 2010 Multi-
computer,” in G. Fox, editor, Proc. 8rd Conf.
Hypercube Concurrent Architecures, pp. 33-36,
1988. '

[8] H. S. Stone, “Parallel processing with the per-
fect shuffle,” IEEE Trans. Comput., C-20, pp.
153-161, Feb. 1971.

[9] L. G. Valiant, “A Scheme for Fast Parallel
Communication,” SIAM J. Comput., Vol. 11,
No. 2, pp. 350-361, May 1982.

3%



n=4¢, k=2, a=1010

7(0) =1, =(1) =3, n(2) =2, =(3) =0

fra(z3z22120) = To22T31,

0000 0001 0010 o0o11
* — —y-
0100 010 0110 0111
T k Y
\
1 1001 1010 1011
% 4 ¢ e
( Y
1100 1101 mol 1111
> - ¢
t =00
(b)
0000 0001 0010 0011
® * - 9
i
0100 o101 ano ons
; e 111.
1000 1001 | quemelfil 101}'
*— y 2 $1 ? 3
, 11 1101 1110 | 111
! * » ®
t=10
)

(a)

00 o 01LL 0001 . 00
10 1010, 1000 * 10
111, 0101
’ M ’
- o 11
n 1110, llm
0000 0001 0010 0011
1 —

owoﬁy 0101 - 0110 om#p
1ooo+_—___1m;+ 101% 1011

moL 111
1100 ol

0100 0101 0110 0111*
Y —

1000 1001 1010 | 1011
y'

1100 |L— 101 1110 lllli
- @

t=11
(e)

The Bipartite Graph (a), and The Schedule (b,c,d,e) of a permutation fr 4

Figure 1

397



