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Abstract

Efforts are underway worldwide to create Web-
accessible mathematical and scientific digital libraries.
To benefit fully from such resources, users should be
able to search not only for text, but also for equations
and other math constructs. This paper will identify
major issues that must be addressed in building math
search systems, and then present techniques for devel-
oping a math search system on top of text search sys-
tems. Fundamental to this approach is a process that
textualizes, serializes, scopes, and normalizes math ex-
pressions in contents and in queries. The performance
of the approach is evaluated using a math search sys-
tem that the author has developed.

1 Introduction

Efforts are underway worldwide to create and
codify digital libraries of mathematical, scientific, and
engineering contents [3, 4, 6, 10, 11, 12, 13, 14, 18, 20,
22, 23, 25, 28]. Notable examples include the Digi-
tal Library of Mathematical Functions (DLMF) at the
National Institute of Standards and Technology [8],
and the two XML-based mathematical markup lan-
guages, MathML [19] and OpenMath [18].

For users to benefit from such digital libraries,
they need to be able to search easily and effectively
not only for text, but also for equations and other
mathematical constructs. Although text Search has
reached a high level of maturity [29, 26], mathemati-
cal expressions are highly symbolic and structured that
current search systems do not recognize. Moreover,
mathematical equivalents, which are the counterpart
of synonyms in text but much more complex, cannot
be identified and utilized in current search engines.
Also, math contents and queries involve many levels of
abstraction and peculiar notational ambiguities that,
though easily understood and resolved by humans, are
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beyond the current abilities of text search systems to
handle.

The immediate goal of research on information
retrieval (IR) in math digital libraries is to create a
search system that (1) enables users to search not only
for text, but also for mathematical expressions; and
(2) allows users to express math queries naturally and
easily, using the notation and idiom of mathematicians
and scientists.

This paper will identify the issues that must be
addressed in meeting that goal, and elucidate the text
IR systems’ limitations to overcome to provide math
search and retrieval on those systems. Afterwards,
the paper will present general approaches and specific
techniques for addressing some of those issues. Finally,
the performance of those methods will be evaluated
using a math search system that the author has devel-
oped.

The paper is organized as follows. The next sec-
tion surveys related work. Section 3 will identify the
main issues and challenges of building a search sys-
tem for math digital libraries. General approaches for
building math search systems are outlined in Section
4, and specific methods and solutions for the issues
and challenges identified in Section 3 are presented in
detail in Section 5. In Section 6, the performance of
those techniques is discussed. Finally, Section 7 con-
cludes the paper.

2 Related Work and State of the Art

Besides the mature area of text search [5, 7, 29,
24, 26], one of the most related efforts is the Digital
Library of Mathematical Functions (DLMF) project
[15, 16, 21] at the National Institute of Standards
and Technology (NIST). It is creating a major new
mathematical reference source on the Web for special
functions and their applications. It is estimated that
over 80% of the DLMF handbook/Website contents
are equations. Therefore, a math search system suit-
able for searching for and retrieving equations is essen-



tial. The author is developing the math search system
for DLMF [21].

In the core area of math search, some other work
has started to appear. Recently, Guidi et al pub-
lished papers on a math query language MathQL [11]
and related searching techniques [10], both of which
are for RDF metadata repositories, where RDF is
the XML-based metadata markup language standard.
The MathQL syntax is a markup style that is advanced
in its expressive power, but requires the users to be ad-
vanced mathematicians. Our math query language is
much higher level and easy to use, and does not re-
quire RDF contents. Another effort is a searching tool
for integral-lookup [9].

There are other mathematical knowledge man-
agement research efforts [4, 6, 12, 17, 25]. None of
them deals with math search, although MKM systems
and math search systems can in the end be synergisti-
cally combined.

3 Math Search Issues

From the analysis of text IR systems and the
experiences with building a math search system, we
present here some of the major issues that have been
identified. Methods for addressing most of these issues
will be presented later.

1. Defining an intuitive yet expressive math query
language
Users of math digital libraries must be able to
express their search needs in the ”native”, concise
language of math. For example, to search for a
document that contains the expression (z + 1)2,
the user need not enter as a query anything more
than (z + 1), or something very close such as
(z+1)"2.

2. Bridging the query language with the language of
the content files
Clearly, the native-math query language is bound
to differ significantly from the language of the
mathematical contents of digital libraries. The
latter language is likely to be HTML, Latex,
MathML, MS Word, PDF, or the like. Regardless
of what approach is used for indexing and search-
ing, the query language and the contents language
must meet. Either the query language is trans-
lated to the contents language, or both languages
are translated to an intermediary and structure-
rich language before indexing and searching take
place.

3. Making IR systems “understand” math symbols €
structures

Mathematical contents often involve symbols as
in “Pn(x)”,“x"”, or “d"2y/dx"2 - x=". Such
symbols are often ignored or wrongly interpreted
by current text-IR systems. Also, mathematical
equations and other constructs have rich struc-
tural semantics. Current search systems do not
recognize or index those structures. For example,
to current search systems, a query like“sin(x + log
x)” is probably the same as “sin x + log x”. Since
searchers in technical fields would prefer to search
based on term-roles, sub-expressions, and sub-
structures, rather than on just mere occurrence of
keywords, text-IR systems cannot meet these re-
quirements. Therefore, math search systems must
be able to recognize, process, and search for math-
ematical symbols, structures and substructures.

4. Highlighting matched equations

Highlighting of matched terms inside retrieved
documents is very convenient in general text
search. It is even more crucial to highlight
matched equations inside retrieved math docu-
ments because of the higher importance of equa-
tions relative to the rest of the document. Unlike
text keywords, highlighting matched equation in-
side HTML documents, where equations are usu-
ally rendered as GIF images, is nontrivial. The
string search techniques commonly used to find
and highlight keywords inside documents do not
apply to locating GIF images inside documents.
Instead, new techniques are needed.

This is by no means an exhaustive list of issues.
Other issues will be addressed in other papers.

4 General Approaches for Building
Math Search Systems

Two broad approaches to building math search
systems can be taken. The first is a text-IR-based ap-
proach, where new layers are wrapped around a capa-
ble but conventional text-IR system to make it math-
aware in search. This approach leverages the advanced
state of the art in text search, and is much faster to
carry out.

The second is a radically different approach based
on the emerging XML-based technologies and markup
languages. This approach is likely to be much more
powerful than the text-IR based approach, but these
technologies are still evolving.

In this paper, we adopt the text-IR based ap-
proach to building math search systems.



Operator | Meaning

+, —, /, * | arithmetic operators

", k% Superscript or power

- subscript

=>,<=> | imply (=), equivalent (<)

!'=, not = | not equal (#)
=- equivalence (=)

= congruence (22)

Table 1: A sample of operators in the math query
language

Rendered Form | Query Syntax
Iy sin(3t® + at) | integral_ 0 infinity
sin((1/3)t"3+xt)
VAi? + Bi? sqrt(Ai“2+Bi"2)
(- .)(w+2) “(x+2)
// (x+2) as an exponent part
) ] (x+2)
// (x+2) as a denominator

Table 2: A sample of math queries

5 Methods for Building a Text-IR
Based Math Search Systems

5.1 A Math Query Language

The math query language is similar to but sim-
pler than LaTeX. It includes almost all the standards
names of functions in mathematics, including elemen-
tary functions and Special Functions, along with their
syntax (i.e., number and order of each function’s ar-
guments and parameters). Table 1 gives a sample of
operators, and Table 2 illustrates math queries. The
language also incorporates Boolean, phrase and prox-
imity operators of text-IR systems. For lack of space,
the details and the grammar of the query language will
be published elsewhere.

5.2 Techniques for Making Text IR Sys-
tems Math Capable

As mentioned in Section 3, IR systems should be
able to “understand” math symbols and structures,
and to bridge between the math query language and
the language of the math contents. One technique to
do so is to define an intermediary language that is
purely textual (i.e., alphanumeric), and to map both
the queries and the math content of the digital libraries
to it. This will be elaborated in this subsection.

Algorithmically, the mapping process involves the
following three principal steps:

1. Textualization of math symbols

2. Serialization and scoping of the various parts of
terms and expressions

3. Normalization of the orders of parts into a stan-
dard canonical form.

Textualization turns each non-alphanumeric sym-
bol into a unique alphanumeric word, resulting in a
purely textual representation of queries and contents.
For example,“” maps to the word plus,“-” maps to
minus, and “* ” (for power or superscript) maps to
beginsuperscript expression endsuperscript.

Serialization stacks the structural parts of an
equation in a linear sequence, and scoping delineates
and surrounds different parts and substructures of ex-
pressions with identifying tags. As illustrated in Fig-
ure 1, a definite integral is serialized into: (1) in-
tegral, (2) the lower limit, and (3) the upper limit.
Scoping wraps (1) the lower limit with beginlowlimit
endlowlimit, (2) the upper limit with beginupperlimit
endupperlimit, and (3) the integrand with begininte-
grand endintegrand; it also precedes the variable of
integration with an appropriate term such as diff.

Serialization, coupled with textualization, makes
it possible to search for math phrases using text-IR
systems that support phrase search. Scoping allows
users to search for equations by specifying terms in the
various structural parts, such as integrands, numera-
tors, denominators, function arguments, summands,
and so on.

The third step, normalization, reorders the terms
of the serialized & scoped forms into some defined
canonical order so that certain variations in notations
and writing styles in mathematics will not lead to
search misses. The extent of normalization is deter-
mined by how much the designer wishes to support no-
tational equivalences and mathematical equivalences.
Table 3 illustrates normalization.

The above three steps give rise to an intermedi-
ary language, called TexSN (from Textualization, Seri-
alization/scoping, and Normalization). The database



fab(wz +z/2)dz
(a)

integral
beginlowerlimit a endlowlimit
beginupperlimit b endupperlimit
beginintegrand
x beginsuperscript 2 endsuperscript
plus
frac
beginnumerator x endnumerator
begindenominator 2 enddenominator
endintegrand
diff z

(b)

Figure 1: An Illustration of Textualization, Serializa-
tion and Scoping. Part (a) is a math expression, and
part (b) is its textualized+serialized+scoped counter-
part

Math Normalized

Expression Form (with Comments

3 x beginsubscript 2 endsubscript

expressed as beginsuperscript 3 endsuperscript
z_2"3orx"3_2
(Comment: Subscripts come
before superscripts)

ct+a+d+b a plus b plus ¢ plus d

(Comment: We order the terms
alphabetically when valid)

ab~ledt frac
beginnumerator
a times ¢
endnumerator
begindenominator
b times d
enddenominator

(Comment: We get rid of
negative powers)

Table 3: Illustration of normalization

files are converted to the TexSN form offline before
they are indexed by a text search system. Also, ev-
ery math query is translated online into a TexSN form
Boolean query before it is handed to the text search
system for searching and retrieval.

This three-step approach achieves several objec-
tives at once. First, it renders math expressions, equa-
tions and other constructs indexable and searchable
with a standard text search system. Second, it bridges
the query language with the language of the math li-
brary, reconciling disparities in notation and math-
ematical idioms and idiosyncrasies between queries
(users) on the one hand, and the library (authors), on
the other hand. Third, it offers users a good measure
of specificity about which part or structure of a math-
ematical expression that the keywords (or phrases)
must be in.

5.3 Techniques for Equation Highlighting

To achieve equation highlighting, discussed in
Section 3, a dual data model is defined. This entails
the following;:

e Each equation is given an identifier that is unique
across the whole database.

e Each equation ID contains the name of the docu-
ment containing the equation.

e The ID of each equation must be inserted in the
vicinity of the equation inside the document that
contains the equation.

e Although equations are embedded inside docu-
ments, they are extracted (but not deleted) from
the documents, and individually stored as sep-
arate units (e.g., files), called equation storage
units, somewhere in a file system or a database
system.

e The name (or ID) of each equation storage unit
must contain the ID of the corresponding equa-
tion, directly or in some codified form.

e The text IR system creates two index files: one
for the document database, and another for the
equation storage units. Thus the duality of the
model.

For example, if E is the 12th equation in a docu-
ment XYZ, then E must be given an ID of the form
XYZ.12 (or something equivalent), and the equation
storage unit for E must be given a name/ID of the
form EQ.XYZ.12 (or something equivalent), and the
ID XYZ.12 must be inserted next to the equation E
inside the document XYZ.



When equation highlighting is to be performed
(at hit-browsing time), the IDs of the matched equa-
tions and their native documents are extracted from
the hit list of matching equations, and used to locate
those equations in their native documents, and then
to add highlighting markup (or stylesheet instructions,
or the like) to the documents right before handing the
documents to the browser for display.

6 Performance Evaluation

The math search system has been implemented
on top of a text-IR system that supports Boolean
operators, single- and multi-character wildcards, the
phrase (adjacency) operator, and the proximity oper-
ator. We tested it and evaluated its performance on a
collection of 300 mathematical documents containing
about 2000 equations, measuring precision and recall.

The major problem in measuring performance of
math search systems is the lack of any math query
benchmarks because this area of search is quite new.
For the system at hand, we tested it using about 50
queries believed to be quite representative for the time
being. It was found that the system delivered 100%
recall on all the queries, and that the precision ranged
from 60% to 100%, averaging around 80%. Table 4
shows a small cross-section of the queries tested, and
the corresponding precision and recall recorded.

In terms of query processing speed and
turnaround time, it was found that the front-end pro-
cessing (i.e., TexSNization) of a query before it is
handed to the text IR system takes on the order of
milliseconds on a Pentium 1.4GHz PC. Also, the time
to distill the queries and the time to add equation high-
lights is in the order of tens of milliseconds (the lat-
ter case depends on the size of the document). All
in all, the math-related components of the query pro-
cessing is a tiny percentage of the overall search and
retrieval time performed by the text-IR system. The
whole turnaround from the moment of submitting the
query to the moment of seeing the hit equation list is
about 1 second, and the time to display a document
with all the highlights is also about one second.

7 Conclusions and Future work

This paper has identified the major issues in-
volved in creating a math search system, and presented
a number of techniques, methods and ideas for build-
ing a math search system on top of a conventional
text search system. The powers and limitations of
this approach were highlighted, and potential alterna-
tive techniques for future enhancements were pointed

Query Precision Recall
x? 91% 100%
I(1/2+p—k) 100% 100%
I(1/24 % — = 100% 100%
Ai® + Bi? 5% 75%
J? 62% 100%
[, 100% 100%
Iy sin(3t® + at) 100% 100%

Table 4: System performance on a sample of queries

out. The tests show that the performance of text-
IR based math search is very good, and is likely to
yield high user satisfaction. The search capabilities
are expected to be adequate for the majority of math
& science users, from middle school students all the
way to graduate students and professionals in math
and science.
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