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Abstract

Cluster methods have been successfully applied in gene
expression data analysis to address tumor classification. By
grouping tissue samples into homogeneous subsets, more
systematic characterization can be developed and new sub-
types of tumors be discovered. Central to cluster analysis is
the notion of similarity between the individual samples. In
this paper, we propose latent structure models as a frame-
work where dependence among genes and thus relationship
between samples can be modelled in a better way in terms
of topology and flexibility. A latent structure model is a
Bayesian network where the network structure contains at
least a rooted tree including all variables, only variables at
the leaf nodes are observed, and the structure after delet-
ing all the observed variables is a rooted tree. The main
gain in using latent structure models is that they provide a
principled and systematic method to handle the dependence
among genes. There are other benefits offered by latent
structure models. They do not require any prior knowledge
on the determination of tumor classes and choice of similar-
ity metric, which are two important issues associated with
the traditional clustering techniques. They are also com-
putationally attractive due to the simplicity of their struc-
tures. We develop a search-based algorithm for learning
latent structures model from microarrays. The effectiveness
of the algorithm and the proposed models is demonstrated
on publicly available microarray data.

1. Introduction

In model-based clustering, the objects under analysis are
assumed to be generated by a finite mixture of probability
distributions and one component corresponds to each class
[8]. Cluster analysis is sometimes called latent class anal-
ysis [1, 4, 7, 9] when the attributes are categorical. Under-

lying such an analysis is the latent class (LC) model. Such
a model is a simplest Bayesian network consisting of one
class variable (unobserved, hence often called latent class
variable) on the root with all the other observed variables
on its children nodes as leaves. Each variable can take on
several values. Each value of the latent class variable corre-
sponds to one class, while each value of an observed vari-
able corresponds to one of its states. The number of values a
variable can take on is called its cardinality. Typically, one
record of the observed data generated by the model con-
sists of a combination of the values corresponding to cer-
tain states of some or all observed variables. Figure1 is an
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Figure 1. A LC model with one latent class
variable �� and seven observed variables ��,
� � �, ��.

example of a LC model, which consists of one latent class
variable�� and seven observed variables ��’s.

One serious problem with the use of LC models, known
as local dependence, is related to the assumption of condi-
tional independence of observed variables given the latent
class variable. This assumption often fails in reality and
thus its use often weakens the performance of clustering
analysis. It is clear that the better the local dependence is
modelled, the higher the performance is achieved [9]. One
recent study of modelling local dependence is conducted
in [12]. The underlying model is hierarchical latent class
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(HLC) model, where the local dependence is handled by
introducing new latent variables (Figure 2).
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Figure 2. An HLC model obtained by introduc-
ing two additional latent variables �� and ��

to the LC model in Figure 1.

When applying HLC models to gene expression data, the
observed variables ��’s denote the expression level of indi-
vidual genes, and the latent variables denote other attributes
(e.g., background variables) affecting the system. In doing
so, HLC models may not be sufficient to model the depen-
dence among genes. For example, there might be some in-
teraction between the latent variable �� and the observed
variable �� in the model shown in Figure 2. But such an in-
teraction effect cannot be addressed by the described HLC
model.

In this paper, we propose latent structure models to an-
alyze gene expression data. A latent structure model is a
Bayesian network where the network structure contains at
least a rooted tree including all variables, only variables at
the leaf nodes are observed, and the structure after delet-
ing all the observed variables is a rooted tree. Latent struc-
ture models allow latent variables to influence the observed
variables interactively and include both LC and HLC mod-
els as the special cases. Latent structure models provide a
principled and systematic method to handle the dependence
among genes. They can lead to a better understanding of
genes’ expression and improve the analysis of microarrays.

The rest of paper is organized as follows. In Section 2,
we introduce latent structure models and describe the tech-
niques in learning the models. In Section 3, we present
an application of latent structure models to clustering sam-
ples of the well-known leukemia data set. Our conclusion
is given in Section 4.

2. Latent Structure Models

A latent structure (LS) model is a Bayesian network
where

1. The network structure contains at least a rooted tree
including all variables with the observed variables on
the leaf nodes only;

2. The variables at the leaf nodes are observed while all
the other variables are not;

3. The network structure after removing all the observed
variables and their corresponding connections is a
rooted tree1; and

4. No connections are allowed among leaf nodes.
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Figure 3. A LS model with three latent vari-
ables ��, ��, �� and seven observed vari-
ables ��, � � �, ��.

An example of a LS model is shown in Figure 3. It contains
a rooted tree (as in Figure 2) consisting of all the variables
with only observed variables on the leaves. By removing
all the leaf nodes and their corresponding connections, the
rest of the network structure is also a rooted tree shown in
Figure 4.
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Figure 4. The network structure after remov-
ing all the observed variables and their corre-
sponding connections from the LS model in
Figure 3.

For convenience, a LS model is denoted by � , which
contains the information of the topology and cardinalities of
latent variables. We use ������� � ���� ��� � � � � ��� to
represent the set of HLC models contained by a LS model.
For instance, ������� for the LS model in Figure 3 con-
tains 4 HLC models. One of them is actually the HLC
model in Figure 2. We also use internal(� ) to indicate the
remaining model after removing all the observed variables
and the corresponding connections from� .

1The connection between two nodes is denoted by an arrow in the
Bayesian network.
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2.1. An Algorithm For Learning LS Models

This subsection describes a search-based algorithm for
learning LS models from data. It distinguishes in two parts:

� Part 1: Learn the optimal ������� given observed
variables;

� Part 2: Learn the optimal LS model based on the op-
timal �������.

The same algorithm for learning HLC models can be used
for Part 1. As suggested by [12], the search space is struc-
tured into two levels according to the following two sub-
tasks:

� Sub-task 1: Search the the optimal cardinalities for the
latent variables given model structure;

� Sub-task 2: Search the optimal model.

A natural way of designing the search operators can be
achieved by performing these two sub-tasks. Such restruc-
turing of search space can also be applied in Part 2. For both
parts, the EM algorithm and BIC score are used for param-
eter learning and model scoring respectively. The search
control is the same for both parts. Figure 5 illustrates the

Search control in sub-
space 2: model structure

search

Search control in sub-
space 1: Cardinalities

Search control in sub-
space 1: Evaluation

Data

Iteration for
optimal
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Iteration
for

optimal
model

Optimal model learned

Figure 5. Search control in both Part 1 and
Part 2.

sub-spaces corresponding to each of the two sub-tasks. The
only difference between the two parts in terms of search
control is that the search control of Part 1 starts from a LC
model or some other HLC model, while the search control
of Part 2 starts from ������� of Part 1.
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Figure 6. Illustration of the search operator
arrow addition.

To conduct the search in Part 2, an operator called arrow
addition may be introduced. Figure 6 illustrates how arrow
addition works. To reach �� from ��, one simply adds an
arrow between �� and ��. This is what the search operator
arrow addition does. Note that�� cannot reach�� by only
one step. To reach �� from ��, several steps are needed.
We first reach �� from �� and then reach �� using arrow
addition again.

For learning the optimal LS model based on �������,
a search-based hill climbing method is typically used. In
general, we only consider LS models where the upper
bound of the number of parents for any leaf variable is pre-
specified �, namely only less than or equal to � connections
to internal(� ) for each leaf variable. We check each of the
leaf variables and generate a number of candidate LS mod-
els. Such candidate models are generated by adding a con-
nection (using the arrow addition) between the leaf variable
under investigation and each of the variables in internal(� ).
The best candidate LS model will be selected as the seed
for the next search, and we keep going until the optimal LS
model is learned. Note that we only check the leaf variables
whose connections to the internal(� ) are bounded by �.

3. Analyzing Expression Data

In this section we investigate the effect of LS models on
clustering gene expression data. We used the leukemia data
set [6]. This data set contains gene expression levels from
Affymetrix high-density oligonucleotide arrays. Included
in the data set are ���� genes, �� cases of ALL, and ��
cases of AML. For a simple illustration, we employed gene
selection method described in [3] to choose the top �	 genes
by using the correlation threshold � 
 	�� and the Brown-
Forsythe test statistic. Table 1 shows the genes selected
in our experiment. Since we are dealing with the discrete
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Table 1. The genes selected in this experiment
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LS models, data discretization is needed. To discretize the
leukemia data, we use the median method described as fol-
lows. Choose one median for a record of data if we want to
discretize it into two categories, say ’1’ and ’0’. The value
greater than or equal to the median is set to be ’1’ and ’0’
otherwise. Generally, ��	medians are needed to discretize
the data into � categories. In our experiment, we chose the
eight categories.

We applied LS models to leukemia data set by choosing
EM threshold to be ���	 for model selection and 	�� � for
the final model parameter learning. Out of the �� samples,
only one sample (AML) is misclassified. The correct rate
is ����
. CLIFF [11] misclassified three ALLs. The corre-
sponding correct rate is ����
. [10] analyzed this data and
misclassified two ALLs, but only one AML was misclas-
sified if utilizing the sample pathological phenotype. We
have noted that the performance of LS models was affected
by various factors such as the categories of discretization of
the data and the number of genes selected.

4. Conclusion

We propose latent structure models for gene expression
data analysis in this paper. The dependence among genes is
naturally handled by these models. Latent structure models
are generalization of both LC and HLC models. Experimen-
tal results show that latent structure models are effective in
clustering gene data. Latent structure models are new mod-
els introduced for gene data analysis. We only provide some
preliminary results in this paper. Further research will be
continued.
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