owin

it s

B s

Greedy Partitioning Strategy for Banyan-Hypercube Networks

Abdelghani Bellaachia
Abdou Youssef

Department of Electrical Engineering and Computer Science
The George Washington University
Washington, D.C. 20052

Abstract

We have developed a partitioning strategy (FP) for
banyan-hypercubes (BH's) networks, similar to the best fit
strategy of memory allocation. In this paper, we will
design and study a greedy partitioning (GP) strategy for
BH's which 1o some extent resembles the first fit strategy
of memory allocation. We simulated both FP and GP
strategies. The simulation results show that the two
strategies yield the same system performance. However,
the FP strategy runs faster than the GP strategy and is
preferable for practical considerations.

1. Introduction
Interconnections networks are among the most

.critical components in multiprocessor systems. Their

efficiency depends on several factors. Among these factors
1s the partitionability of the network (2], [5], [7]. It
provides an increase in system throughput as well as in
the speedup of individual jobs [5]. Examples of
partitionable systems include the Ncube [6], PASM (7],
and the Connection Machine{4].

Partitioning consists of splitting the network into
several subnetworks, called partitions, of different sizes.
Each partinon must have the same structure as the
original network in order to use the same routing and
mapping algorithms. Network partitioning software
consists of three main components: (1) a data structure to
keep track of available partitions in the system; (2) a
partinon allocation process that partitions the network and
allocates partitions to requests; and (3) a deallocation
(rccombining) process that merges freed partitions with
other free partitions in the system to form larger partitions
and minimize fragmentation.

Banyan-Hypercube (BH) networks were recently
introduced as fixed interconnection networks in [8]. They
have many hypercube features such as self-routing and
efficient embedding of rings and meshes. In addition, they
have advantages over hypercubes in extendability,
diameter, average distance, and embedding of trees,
pyramids and multiple pyramids.

TH0363-2/91/0000/0487$01.00 © 1991 IEEE

487

This paper will study a partitioning strategy of
BH's, called greedy partitioning (GP), and compare it with
another strategy, called first partitioning (FP), which we
developed elsewhere [1]. It was shown that FP strategy
has a better internal fragmentation than that of the buddy
system on the hypercubes and both strategies have similar
total fragmentation for large request sizes. The new greedy
partitioning (GP) strategy of BH's always searches the
smallest available partition to satisfy an incoming request.
The recombining of a released partition is always done on
its largest available buddy. The GP strategy uses the same
data structure used for the FP strategy [1]. Algorithms for
both allocation and recombining processes will be
described, simulation results of both FP and GP strategies
will be compared and discussed.

The paper is organized as follows. The next
section gives some definitions and notations. Section 3
reviews the data structures used for partitioning the BH.
In section 4, algorithms for the GP strategy are presented.
Simulation results are discussed in Section 5. The last
section presents conclusions and future directions.

2. Preliminaries and Definitions

Banyan-hypercubes are a synthesis of banyans [3]
and hypercubes. A banyan-hypercube, denoted
BH(0,h.k,s), where h <k+1 and s is power of 2, is the
first 4 levels (from the base) of a (k+1)-level rectangular
banyan of spread s, such that the nodes in each level are
interconnected by a hypercube (dashed lines in Figure 1).
The levels of the banyan are numbered from 0 to 4-1 and
the nodes in each level are labeled in binary from O to sk
1. Therefore, each node is labeled by a pair (L.X) where
0<L<h -1 and X is a cube address of the form x;_;..x;xg
in the number system of base s. The total number of
nodes in the network is As¥. For a complete definition of
the banyan-hypercube, the reader is referred to [10]. If A
=k+1, the network is called a full banyan-hypercube.
Figure 1 shows a full banyan-hypercube network.

Definition 1: A subbanyan-hypercube BH(b;,l;.k;,5)
of BH(0,hk,s), where 0<b;<h-1, 1</;<h, and 0<k;<k, is a
banyan-hypercube of [; levels starting at level b; such
that the nodes in each level are interconnected in a k;-cube.

The base level b; must satisfy the following conditions:
(1) 0gb<k+1-1; if 1<igh (I#1)
(2) 0<bish -1 if I;=1

Note that the labels of the levels of BH(b;,0;.k;.5)
are bj, bi+1, bi+2,..., bi+l;-1. Throughout this paper b; is
the base of the subbanyan-hypercube, k; is the
logarithmic width, ski is the width, and I; is the height.

000 001 010 011

100 101 110 111

- -
o wwmmaZLeN
AN RS AL

AR,
(a) BH(0,4,3,2)

Figure 1

Definition 2: An (I;,kj)-partition is any subbanyan-
hypercube whose height is {; and logarithmic width is &; ,
where I; <k; +1. The size of an (I;k;)-partition is I; ski.

For practical considerations, the value of s is
preferred to be 2 or 4. Throughout this paper only
banyan-hypercubes with spread s=2 are treated. In this case
each node in the network is identified by its level and its
cube-address x;_;...x;x, , where x; is either O or 1.

Each partition BHj is identified by a triplet
(b;.0;,cube address), where cube address is a k-digit address
and each digit is either O, 1, * where * is "don't care”. The
cubc address has k; *'s in the k; least significant bit

position, i.e. ax.jak.2...axi**i where a; =0or1 for
/cl-<a,-<k.

Theorem 1: The total number of ({;,k;)-partitions in a
BH(0,A,k,2) is:

/ (k~1+2)2"% if 11
P (ll',k)= _

n itk \hz"“' if 1=1
Proof: The proof is given in [1].

3. Network Data Structures

During partitioning, some partitions may
become free, either when a given task completes its
execution or when splitting a partition into smaller
partitions to accommodate an incoming task with a small
request. In either case, a data structure is needed to record
available partitions. Two data structures were presented for

488

the partitioning of the banyan-hypercube [1]. They are
reviewed in this section.

Since each partition in the network is
characterized by its base level, its number of levels, its
logarithmic width, and its cube address, a three-
dimensional array, P, is first considered, where each entry
points to a linked list of free partitions. The nodes of the
linked list pointed to by the entry (b;k;,/;) contain the
cube addresses of those partitions that have the base level
b;, the number of levels /;, and the logarithmic width k;.
Initially, all entries point 10 null, except for the entry
P[0.k,1], corresponding 1o the original network. Figure 2
shows the data structure of the BH(0,4.3,2).

Jj) o2, 03, 4
T o
1l ¢ 1 /
AN, Al
3 /1 717 LINANAN,
b; =0 bj =1
=¥ ,‘

Gdo1p2q 3 4 1121 31 4
0 / E]C !k &
1/ i/
b ; q /
¥ /] /B j /
bl=2 b =3
Data structure for BH(0,4,3,2)

Figure 2

The unused entries (shaded area) in the array
correspond to the subnetworks which do not satisfy either
conditions (1) or (2) defined in the previous section. As
can be seen in the example given in Figure 2, the array is
VEry sparse.

The second data structure is a mapping of the
3-dimensional array P into a one-dimensional array, called
PART. The size of PART is equal to the number of the
used entries in P. The mapping function of an element of
P into an element of PART is given in [1]. The space
complexity of both data structures is given in [1].

4. The Greedy Partitioning Strategy

To partition the banyan-hypercube, a greedy
partitioning (GP) is proposed. In [1], the
banyan-hypercube was shown to be partitioned along two
direcuons: horizontally and vertically. The vertical
partitioning uses the binary buddy system, and it is
possible only if the partition, BHi(b;,/;4;,2), is not a full
banyan-hypercube: b;<k;+1-I; (condition (1) of definition
1). The horizontal partitioning can be done at any ievel of
the network.

e

e w el

£ 4

Wi

e o

e

S

Some partitions can be split or combined
horizontally and vertically, others can only be sphit (or
combined) horizontally. For example if the network is
full, it cannot be split vertically. During the process of
splitting and combining partitions, we are interested in
valid partitions. Formally, a partition BH;(b;,/;.%;,2) in a
BH(0,4,k,2) is a valid partition if its cube address is of the
form ak-jak,z...ak.k;+1*"i and if b;, {;, and k; satisfy
conditions (1) and (2) in defimition 1.

A valid partition BH;(b;,/;,k;,2) with cube
address ag. 1ak,2...ak,'*"i can be split vertically into two
valid partitions of the form BH;(b;/;,k;-1,2) with cube
addresses ak.1ak.2,..ak,'()*"i“1 and ak.Jak,g...am*ki'].
The two partitions are called cube-buddies.

For every [in the range between 1 and /;-1,
BHi(b;,l;.k;,2) can be split horizontally into two
partitions BH(b;,0,k;,2) and BHy(b;+!,1;-1,k;,2), both of
cube address ai.jag.2...ak*ki . BH) and BHy are called
level-buddies; BH; is the lower level-buddy and BH,, is the
upper level-buddy .

Combining, the opposite process of splitting,
can be done horizontally and vertically as follows. If
BH;(b;,l;.k;,2) and BHj(bj,Ij,kj.2) are valid partitions with
cube addresses Ai=ay.jag.2...ag;**iand
A)'=ck.1ck.2...ckj*"j, then:

- if bj=bj and /;=l; and k;=k; and A; and Aj agree
in all bits except for ay; and cy; then the two partitions
(cube-buddies) can be combined into a single partition

BH(b;,l;ki+1,2) with cube address ak,1ak_2...aki+1*ki*1.

- if kj=k; and b=b;+1; and the two cube addresses
are idenucal, then the two partitions arelevel-buddies and
can be combined into a single partition BH(b;,{i+/;,k;,2)
with cube address Gk.]dk.z...a[u'*ki :

4.1 Allocation algorithm

The GP strategy uses a greedy allocation
procedure which always allocates the smallest available
partition that can accomodate the incoming request. To
illustrate how the allocation procedure works, we will 10
usc the first data structure described in section 3.

For an incoming task of size n, the computation
of the size of the required partition is such that the internal
fragmentauon is minimized. The logarithmic width k; and
the height /, of the required partition are such that
n<l 2801,

Allocation of partitions always starts from the
lop available partitions in the network (i.e. high base
levels). This is because all the top partitions with a higher
base can be allocated at smaller base level but not vice-
versa. For example in Figure 1 we can always allocate a
(2.3)-partition either at base 0 or at base 2, but a
(2,1)-partition can only be allocated at base 0.

Figure 3 depicts one entry of the data structure
given in Figure 2, b;=0, 0<k;<k, and 1<l;<h. In this
figure, 1t is clear that if there is no available partition at

489

the entry b;=0, k;=1, and /;=1, then there are two possible
ways to choose a larger partition : either a partition with
larger logarithmic width k; such that ki<kjsk, or a
partition with a larger number of levels [j such that
li<ljSki+1-b; if the network is full, otherwise li<l<h.
The allocation procedure consists of three steps.
The first step computes the set B of all possible values of
the base of the (/;,k;)-partition. Those values are in the
range from O to k-l+1 if /=1, and in the range from O to
h-1if I;=1 (definition 1). The search of a free partition is
done in the second and third steps. The second step starts
looking for a free (/;.k;)-partition, for all possible values
of B, starting from the largest value, where initally [; =/,
and k,; =k,. If there is a free partition

hi h

Figure 3

then it is allocated; otherwise, a larger partition should be
searched in the third step. In this step, both
(i kj)-partition and a (1j,k;)-partition are searched, for
every possible value b; in B for k;j<k;j<k and for
li<ljski+1-b; (Ij</;<h if the network is not full). If both
(1i,k;)-partition and (Ij,k;)-partition are found, the GP
strategy allocates the smaller one; otherwise, if one of
them is found then it is allocated. If there is no free
partition at any base b;, both /; and k; are incremented by
one and the cycle is repeated, as shown in Figure 3 (b),
until a partition is found or k=k or {;=h. If there is no free
partition, then the request is queued for later scheduling.
Clearly, the time complexity is O(h2k).

4.2 Recombining algorithm

The last step of our partitioning system consists
of recombining released partitions with available ones in
order to reduce the 1otal fragmentation in the system.,
Since cach partition may have a cube-buddy freed partition
or a level-buddy freed partition, the recombining is also a
greedy procedure; it always chooses the buddy which,
when combined with the released partition, results in a
larger partition. Figure 4 (a) shows the case when the
cube-buddy yields larger partition whereas Figure 4 (b)
shows the case when the level-buddy vields a larger
partition.

It is clear that the complexity of the recombining
algorithm 1s O(k) which is the time to search either an
upper level-buddy or a lower level-buddy.

®)
! Partition 1o be recombined
D Free partitions in the sysitem
Figure 4

5. Simulations

We have simulated both GP and FP strategies on a
BH of 1 K nodes, using uniform and exponential
distributions for request sizes, and uniform distribution for
task lifetime.

The fragmentation analysis of FP was presented
in [1]. Similar fragmentation analysis was done for GP
strategy. Internal, external, and total fragmentation of both
strategies turns out 1o be very similar as shown in Figure
5. Other measures were computed for both strategies.
These include the total number of finishing requests per
unit of time, the turnaround time, and the total number of
allocated nodes for incoming requests. All these measures
were also very close for both strategics.

6. Conclusions

A new GP strategy for partitioning
banyan-hypercubes is presented. It resembles the Best Fit
memory allocation strategy. It always allocates the
smallest available partition for an incoming request and
recombines the released partition with its largest available
buddy. The implementation of both allocation algorithm
and rccombining algorithm and their time complexities
were discussed. We simulated GP and compared it to
another partitioning strategy (FP) that we implemented
elsewhere {1].

It 1s concluded that the BH yields the same
performance under both parutioning strategies. However,
the GP strategy has a bigger execution time than the FP
strategy. Therefore, FP js preferred for practical
considerations.

Future work includes the extension of this strategy
to BH's with spread larger than two. In addition, this
strategy will be rendered distributed 10 reduce partitioning
overhead.

490

o
'

\;:
j_; N, LA A
= - : i \
: il 4/"*’ A < - ‘,,hhh*¥&h
AVErCZe mezLest s s ocara
Figure 5

References

{11 A. Bellaachia and A. Youssef, "Partitioning on the
Banyan-Hypercube Networks," 1o appear in the Third
Symposium on the Frontiers of Massively Parallel
Computation '90.

[2] M. Chen and K.G. Shin, "Processor Allocation in an
N-Cube Multiprocessor Using Gray Codes," /EEE
Transactions on Computers, Vol.C-36, No.12, pp.
1396-1407, December 1987.

[31 R.L. Goke, "Banyan Networks for Partitioning
Muluprocessor Systems”, Doctoral Dissertation,
University of Florida, 1976.

{41 W. D. Hillis, The connection Machine, MIT Press,
1985.

[5] M.Jeng and H.J Siegel, "A Distributed Management
Scheme for Partitionable Paralle] Computers,”" /EEE
Transactions on parallel and Distributed Processing,
vol. 1, pp. 120-126, Jan. 1990,

[6] NCUBE Corp., NCUBE/ten: An Overview,
Beaverton, OR, Nov. 1985.

[7) HJ. Siegel, T. Schwederski, J. T. Kuehn, and N. J.-
Davis IV, "An overview of the PASM parallel
processing system,” in Computer Architecture, D. D.
Gajski, V. M. Milutinovic, H. J. Siegel, and B. P.
Furth. Eds. Washigton, DC: IEEE Computer Socicty
Press, 1987, pp. 387-407.

[8] A. Youssef, B. Narahari, "Banyan-Hypercube
Networks,” 1EEE Transactions on Parallel and
Distributed Systems, pp. 160-169, April 1990.

