INTRODUCTION

- Purpose and Contents of this Course: Design and analysis of algorithms

- Definition of Algorithms:
 - A precise statement to solve a problem on a computer
 - A sequence of definite instructions to do a certain job

- Characteristics of Algorithms and Operations:
 - Definiteness of each operation (i.e., clarity)
 - Effectiveness (i.e., doability on a computer)
 - Termination
 - An algorithm has zero or more input and one or more output

- Functions and Procedures:
 - Functions: Algorithms that returns one output
 - Procedures: algorithms that execute a certain job but does not return any output.
 In actuality, procedures can produce a number of outputs as output parameters.

- Design of Algorithms:
 - Devising the algorithm (i.e., method)
 - Expressing the algorithm (computer language)
 - Validating the algorithm (proof of correctness)

- Analysis:
 - Determination of time and space (memory) requirements
• Implementation and Program Testing: Outside the scope

• Devising: Through some algorithmic techniques

 – Divide and conquer
 – The greedy method
 – Dynamic programming
 – Graph search methods
 – Backtracking
 – Branch and bound

Expression of Algorithms: (Pseudo language)

• Variable declaration:

 integer x, y; real x, y; boolean a, b; char c,d;

 datatype x; (generic)

• Assignment:

 X := EXPRESSION; (or X ← EXPRESSION)

 Examples: x ← 1 + 3; y := a*y+2;

• Control structures:

 if condition then

 a sequence of statments;

 else

 a sequence of statements;

 endif

 while condition do
a sequence of statements;

endwhile ;

loop

a sequence of statements;

until condition;

for i=n₁ to n₂ [step d]

a sequence of statements;

endfor

goto Label

Case statement (generalization of if then else):

Case :

cond₁: stat₁;

cond₂: stat₂;

.

.

condₙ: statₙ;

default: stat;

endcase

• Input-Output:

read (X); /*X is a variable or an array*/

print (data) or print (sentence);

• Functions and Procedures:

Function name(parameters)
begin
 Procedure swap(x,y);
 temp := x;
 x := y;
 y := temp;
 end;

begin
 Procedure max(A:integer);
 x := A[1];
 for i = 2 to n do
 if x < A[i] then
 x := A[i];
 end;
 return x;
 end;

begin
 Procedure name(parameters);
 variable declarations;
 body of statements;
 end;

begin
 end

begin
 end

begin
 end

end

Function max(A:integer);
y := temp;
end swap;

RECURSION

- A recursive algorithm is an algorithm that calls itself on less input

- Structure of recursive algorithms:

 Algorithm A(input)

 begin
 basis step; /*for minimum size input*/
 call A(smaller input); /*recursive step*/
 /*perhaps more recursive calls*/
 combine sub-solutions;
 end ;

- Example:

 Function $\text{max}(A(i:j))$

 begin
 datatype x,y;
 if $i=j$ then return $(A[i])$; endif ;
 if $j=i+1$ then
 Case :
 default : return $(A[i])$;
 endcase ;
 endif ;
 if $j>i+1$ then
x := \max(A(i:(i+j)/2));
y := \max(A((i+j)/2:j));
if x < y then
 return (y);
else
 return (x);
endif ;
endif ;
end max;

Validation of Algorithms

• Frequently through proof by induction on the input size:
 • Recursion
 • Divide and conquer
 • Greedy method
 • Dynamic programming

Analysis of Algorithms

• What it is: estimation of time and space (memory) requirements

• Why needed:
 • A priori estimation of performance
 • A way for algorithm comparison

• Model:
 • Random access memory (RAM)
 • Arithmetic operations, comparison operations & boolean operations take constant time
• Load and store take constant time

• Time complexity: # of operations as a function of input size

• Space complexity: # of memory words needed by the algorithm

• Example: The non-recursive max: time = (n-1) comparisons, space = 1

Big O Notation

\[f(n) = O(g(n)) \text{ if } \exists n_0 \text{ and a constant } k \text{ such that } f(n) \leq k \times g(n) \text{ for all } n \geq n_0 \]

\[f(n) = \Omega(g(n)) \text{ if } \exists n_0 \text{ and a constant } k \text{ such that } f(n) \geq k \times g(n) \text{ for all } n \geq n_0 \]

\[f(n) = \Theta(g(n)) \text{ if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]

Theorem: if \(f(n) = a_m n^m + a_{m-1} n^{m-1} + \ldots + a_1 n + a_0 \), then \(f(n) = O(n^m) \).

proof: \[f(n) \leq |f(n)| \leq |a_m| n^m + \ldots + |a_1| n + |a_0|. \] Therefore,

\[f(n) \leq (|a_m| + \frac{|a_{m-1}|}{n^1} + \ldots + \frac{|a_1|}{n^{m-1}} + \frac{|a_0|}{n^m}) n^m \leq (|a_m| + \ldots |a_1| + |a_0|) n^m \text{ for all } n. \]

Letting \(k = |a_m| + \ldots + |a_1| + |a_0| \), it follows that \(f(n) \leq kn^m \), and hence \(f(n) = O(n^m) \).

Method to Compute Time

• Assignment, single arithmetic and logic operations, comparisons: Constant time

• **if then else**: Time of the body

• **while -for -loop**: If it loops \(n \) times and each iteration takes time \(t \), then the time is \(nt \).
If the \(i \)-th iteration takes \(t_i \), then the time is \(\sum_{i=1}^{n} t_i \).

• Time of the algorithm: sum of the times of the individual statements

Method to Compute Space
• Single variables: Constant space

• Arrays (1:n): n

• Arrays (1:n,1:m): $n \times m$

• Stacks and queues: maximum size to which the stack/queue grows

Stirling’s Approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$